Effective Pedagogy in Mathematics/Pāngarau

Best Evidence Synthesis Iteration [BES]

Glenda Anthony and Margaret Walshaw, Massey University
This report is one of a series of best evidence synthesis iterations (BESs) commissioned by the Ministry of Education. The Iterative Best Evidence Synthesis Programme is seeking to support collaborative knowledge building and use across policy, research and practice in education. BES draws together bodies of research evidence to explain what works and why to improve education outcomes, and to make a bigger difference for the education of all our children and young people.

Each BES is part of an iterative process that anticipates future research and development informing educational practice. This BES follows on from other BESs focused on quality teaching for diverse learners in early childhood education and schools. Its use will be informed by other BESs, focused on teacher professional learning and development and educational leadership. These documents will progressively become available at: [http://educationcounts.edcentre.govt.nz/goto/BES](http://educationcounts.edcentre.govt.nz/goto/BES)

Feedback is welcome at best.evidence@minedu.govt.nz

Note: the references printed in purple refer to a list of URLs in Appendix 2. These are a selection of potentially useful sources for teachers to engage more deeply with the range of issues raised in this best evidence synthesis iteration.
## Contents

About the writers........................................................................................................................................... vi
Advisory Group ........................................................................................................................................... vi
Ministry of Education advisory team ........................................................................................................ vi
External quality assurance ...................................................................................................................... vi
Acknowledgments ...................................................................................................................................... vii

**Forewords** ............................................................................................................................................... viii
- International ............................................................................................................................................... viii
- Early Childhood Education ....................................................................................................................... xi
- NZEI Te Riu Roa ......................................................................................................................................... xii
- Post Primary Teachers’ Association ........................................................................................................ xiii
- Teacher Educators ..................................................................................................................................... xiii
- Māori-medium Mathematics ..................................................................................................................xiv
- Pasifika ...................................................................................................................................................... xiv
- Chief Education Adviser, BES ................................................................................................................ xv

**Authors’ Preface** ................................................................................................................................... xviii
- What is a Best Evidence Synthesis in Mathematics? ............................................................................. xviii
- The importance of dialogue .................................................................................................................... xviii
- Writing for multiple audiences ................................................................................................................ xviii
- The BES as a catalyst for change ........................................................................................................... xix
- Key features .............................................................................................................................................. xix
- References ................................................................................................................................................ xx

**Executive Summary** ............................................................................................................................. 1
- Key findings ............................................................................................................................................... 1
- Overall key findings ............................................................................................................................... 4
- Gaps in the literature and directions for future research .................................................................... 4

1. Introduction.............................................................................................................................................. 5
- Mathematics in New Zealand ................................................................................................................ 5
- Pedagogical approaches and learner outcomes ................................................................................... 5
- Making a difference for all ..................................................................................................................... 6
- Mathematical proficiency ....................................................................................................................... 7
- Social, affective, and participatory outcomes ..................................................................................... 7
- Diversity .................................................................................................................................................. 8
- Equity ...................................................................................................................................................... 8
- Positioning the Best Evidence Synthesis ............................................................................................ 10
- Overview of chapters ........................................................................................................................... 11
- References .............................................................................................................................................. 12

2. Framing the BES ..................................................................................................................................... 14
- Aims of the Best Evidence Synthesis .................................................................................................. 14
- A comparative perspective .................................................................................................................... 14
- Effective numeracy teaching ................................................................................................................ 16
- Professional development and teacher knowledge ........................................................................... 17
- Equitable student access to learning ................................................................................................... 18
- Conceptualising the synthesis ............................................................................................................. 20
- References .............................................................................................................................................. 22

3. Early Years Mathematics Education .................................................................................................... 24
- Introduction ............................................................................................................................................ 24
- Mathematical learning experiences and activities .............................................................................. 25
- Communities of practice ..................................................................................................................... 36
5. Mathematical Tasks, Activities and Tools ................................................................. 94
   Introduction .................................................................................................................... 94
   Tasks that are problematic and have a mathematical focus provide opportunities for mathematical thinking............................................................... 94
   Mathematics teaching for diverse learners ensures that tasks link to learners’ prior knowledge and experiences.................................................. 109
   Mathematical tasks need to provide opportunities for cognitive engagement press and for understanding ................................................................. 120
   Mathematics teaching for diverse learners utilises tools as learning supports 126
   Conclusion.................................................................................................................... 140
   References ................................................................................................................... 141

6. Mathematics Practices outside the Classroom ............................................................ 151
   The school ..................................................................................................................... 151
   The role of the mathematics lead teacher or head of department in establishing productive teaching communities ............................................. 154
   Whole-school partnerships ............................................................................................ 157
   School–home partnerships ............................................................................................. 160
   Facilitating school, family, and community partnerships ........................................ 162
   Conclusion .................................................................................................................. 171
   References .................................................................................................................. 172

7. A Fraction of the Answer ........................................................................................... 177
   Introduction ................................................................................................................... 177
   Building on learners’ prior knowledge and experiences................................................ 178
   Positioning participants as proficient learners .............................................................. 179
   Challenging tasks with a mathematical focus .............................................................. 183
   Using tools to support learners’ mathematical thinking ............................................ 187
   Task engagement and sense making ............................................................................ 189
   Respectful exchange of ideas ....................................................................................... 190
   Belonging to a community of learners ....................................................................... 195
   Teacher knowledge: forms of ‘knowing’ fractions ...................................................... 197
   Part–whole pedagogy ................................................................................................. 200
   References .................................................................................................................. 200

8. Endings Marking New Beginnings ............................................................................. 202
   Gaps and omissions ..................................................................................................... 204
   Final words ................................................................................................................... 205
About the writers

Glenda Anthony and Margaret Walshaw, both from the School of Curriculum and Pedagogy at Massey University, bring to this Best Evidence Synthesis (BES) decades of mathematics classroom teaching and educational research experience. They are acutely aware of the challenge that educators face in constructing a democratic mathematical community with which all students can identify. For them, making a positive difference to diverse learners’ outcomes is a central educational issue. At the heart of their work is a concerted effort to illuminate how this issue is best addressed. In this synthesis, they report on the outcome of their deliberations over, and search for, what makes a difference for diverse learners in mathematics/pāngarau.

Advisory Group

A core Advisory Group membership was selected to provide expertise and critique in relation to the various focuses of the BES, including Māori and Pasifika learners, early childhood, primary and secondary sectors, and teacher education. The authors wish to thank the members of this group:

- Dr Ian Christensen (Massey University and He Kupenga Hao i te Reo)
- Dr Joanna Higgins (Victoria University of Wellington)
- Roberta Hunter (Massey University)
- Garry Nathan (Auckland University)
- Dr Sally Peters (Waikato University)
- Assoc. Prof. Jenny Young-Loveridge (Waikato University)

We also wish to acknowledge the supportive formative feedback received from Faith Martin (Director, Massey Child Care Centre), Brian Paewai (Runanga Kura Kaupapa Māori), Professor Anne Smith (University of Otago) and Johanna Wood (Principal, Queen Elizabeth College, Palmerston North).

Ministry of Education advisory team

The Ministry of Education, led by Dr Adrienne Alton-Lee, has guided the development of the synthesis. The team at the Ministry also gave us access to additional literature and demographic and trend data. We thank all of the team.

External quality assurance

Professor Paul Cobb from Vanderbilt University, US, has provided invaluable assistance. We would like to acknowledge his scholarly critique and thank him for his knowledgeable contribution to the synthesis.

Formative quality assurance was also provided by: Maggie Haynes (Unitec), Professor Derek Holton (University of Otago), Tamsin Meaney (EARU, University of Otago), Lynne Peterson, Tony Trinick (Auckland University), initial and ongoing Teacher Education (Victoria University of Wellington), the New Zealand Educational Institute and representation from the Post Primary Teachers’ Association (Jill Gray). We wish to thank them all for their contributions.
Acknowledgments

The Ministry of Education extends special thanks to those who have contributed to different stages of this BES development through their participation in the BES Management Group. The advice and guidance from principal Diane Leggett, NZEI, and Judie Alison, Advisory Officer (Professional Issues), PPTA, have greatly strengthened this BES development. Particular thanks also to Robina Broughton and Linda Gendall, New Zealand Teachers Council, and to Ministry of Education colleagues.

The Chief Education Adviser acknowledges in particular the support and guidance provided by Malcolm Hyland and Ro Parsons through the partnership between BES and the Numeracy Development Project. The model of collaboration across research, practice and policy exemplified in that project has been an inspiration for the Iterative Best Evidence Synthesis Programme. Thanks to all those in the wider NDP community who have informed the BES development.

The Ministry of Education thanks Dr Fred Biddulph for his ongoing role in providing advice from the earliest formulation of the request for proposals through to a consideration of the final draft.

The Ministry of Education is indebted to Professor Bill Barton, Mathematics Education Unit, University of Auckland, for taking a proactive leadership role in bringing together teacher, teacher educator and research colleagues from across New Zealand to assist in scoping this BES at the outset.

Thanks for the deeply valued contribution made to the formative quality assurance and other advice offered to this BES development by Professor Paul Cobb, Vanderbilt University; Irene Cooper, Sandie Aikin, Cheryl Baillie and colleagues, NZEI; Jill Gray and Patrick McEntee, PPTA; Dr Mere Skerrett-White, Dr Maggie Haynes, Unitech; Dr Jo Higgins and colleagues at the Victoria University of Wellington College of Education; Dr Tamsin Meany, Professor Derek Holton, Lynne Petersen, Peter Hughes, Lynn Tozer and Michael Drake.

Thanks also for the valued participation of colleagues from initial teacher education institutions across New Zealand and Derek Glover, Secretary, New Zealand Association of Mathematics Teachers, in the formative quality assurance forum held for this BES development.

Thanks also for the significant contribution made to this and other BES developments through the advice given in the development of the Guidelines for Generating a Best Evidence Synthesis Iteration by the BES Standards Reference Group; The BES Māori Educational Research Advisory Group, the BES Pasifika Educational Research Advisory Group and Associate Professor Brian Haig, University of Canterbury.
Forewords

International

Even the casual visitor is struck by the dramatic changes that have occurred in New Zealand in the last 15 years. I have tuned in to local media on each of my four visits to get an initial sense of people’s current concerns and issues. Based on this narrow sampling, the New Zealand of 1991 was an immensely likeable country that had seen better days and was struggling to find its place in a rapidly changing world. Although innovation and experimentation appeared to be the watchwords of the day, there seemed to be an undercurrent of apprehension and anxiety as people attempted to cope with economic disruption. Today, New Zealand continues to be an immensely likeable place, but the visitor immediately notices a quiet, understated self-assurance. It has become a largely prosperous country that, in a very real sense, has reinvented itself as a leading information economy in an increasingly globalised world. Refreshingly for the visitor from the United States, there appears to be widespread belief that government will approach problems pragmatically and is capable of solving them. If the Iterative Best Evidence Synthesis Programme is representative of New Zealand government in action, this belief would appear to be well founded.

Put quite simply, the Iterative BES Programme is the most ambitious effort I have encountered that uses rigorous scientific evidence to guide the ongoing improvement of an education system at a national level. The programme has a strong pragmatic bent and is clearly grounded in the hard-won experience of synthesising research findings to inform both policy and teachers’ instructional practices. Four aspects of the programme are particularly noteworthy. The first is the overriding commitment to make the development of the best evidence syntheses transparent. This commitment takes concrete form in the exacting evaluation and feedback process that all BES reports undergo at each phase of their development, from the initial identification of relevant bodies of research literature through to the final critique and revision of the report. This is in the best traditions of science, where claims are justified in terms of the means by which they have been produced.

The second notable characteristic is a mature view of evidence and an emphasis on methodological and theoretical pluralism. This is important, given that attempts have been made in a number of countries, including the United States, to legislate what counts as scientific research in education on the basis of ideological adherence to a particular methodology. In taking an inclusive approach, the Iterative BES Programme acknowledges that different types of knowledge are of greatest use to teachers and to policymakers. Teachers make pedagogical decisions on the basis of a detailed understanding of specific students in particular classrooms at particular points in time. Policymakers, in contrast, typically need knowledge of trends and patterns that hold up across classrooms to make decisions that affect large numbers of students and teachers in multiple schools. Different methodologies are appropriate for developing these equally important types of knowledge.

The third noteworthy characteristic of the programme is its focus on the explanatory power and coherence of theories. Priority is given to theories that give insight into learning processes and the specific means of supporting their realisation in classrooms. This pragmatic criterion is important in a field where theoretical perspectives continue to proliferate.

The final notable characteristic of the programme is its explicit attention to the issues of language and culture. This emphasis is clearly critical if New Zealand teachers and policymakers are to address the inequities inherent in the disturbingly large gaps in school achievement between children of different ethnic and racial groups. In keeping with the tenet of methodological and theoretical pluralism, the Iterative BES Programme uses group categories such as socioeconomic status, ethnicity, and culture as key variables in assessing efforts to achieve
equity. However, it avoids stereotyping children of particular racial, ethnic, or language
groups by acknowledging the complexity of individual identity when explaining inequities in
children's learning opportunities. Furthermore, the programme emphasises ecological models
of learning that link what is happening in classrooms both to the institutional contexts in which
classrooms are located and to issues of race, culture, and language. It is here that the full
ambition of the programme becomes apparent: few viable models of this type currently exist
in education. The BES writers are therefore charged with the task of synthesising in the true
sense of the term, that is, to combine disparate and sometimes fragmented bodies of research
into a single, unified whole. At the risk of understatement, this is a formidable challenge.

The writers of this Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau,
Drs. Glenda Anthony and Margaret Walshaw, have risen to the challenge. They were charged
with the daunting task of reviewing, organising, and synthesising all mathematics education
research from the early childhood years through secondary school that relates classroom
processes to student learning. On my reading, the resulting synthesis of over 600 research
studies is directly relevant to teachers and will be educative for policymakers. The educative
value of the report stems from Anthony and Walshaw’s focus on what goes on in mathematics
classrooms, thereby providing a window on the complexity of effective pedagogy. The forms
of pedagogical practice that they identify as effective are ambitious because they involve high
expectations for all children's mathematical learning. The goals at which these forms of
pedagogy aim are best illustrated in chapter 7, A Fraction of the Answer, in which Anthony and
Walshaw pull together the key insights of the proceeding chapters as they present an integrated
series of cases that focus on the learning and teaching of fractions. As this chapter makes
clear, the instructional goals for fractions are not limited to ensuring that children can add,
subtract, multiply, and divide fractions successfully. Instead, the instructional objectives also
focus on children’s development of a deep understanding of fractions as amounts or quantities.
At an elementary level, children who are coming to understand fractions as quantities know
that $\frac{1}{6}$ is smaller than $\frac{1}{5}$ because there will be more pieces when something is divided into 6
pieces than into 5 pieces, so the pieces must be smaller. At a more advanced level, students
will be able to describe real world situations that involve multiplying and dividing fractional
quantities. More generally, ambitious pedagogy focuses on central mathematical ideas and
principles that give meaning to computational methods and strategies.

Anthony and Walshaw’s review of the relevant research indicates that central mathematical
ideas and principles cannot be directly transmitted to children. However, the research
also shows that discovery approaches that place children in rich environments and simply
encourage them to inquire are also ineffective. Effective pedagogy is complex because it
requires teachers to achieve a significant mathematical agenda by taking children’s current
knowledge and interests as the starting point. As Anthony and Walshaw clarify, these forms
of pedagogy involve a distinctive orientation towards teaching. First and foremost, the
emphasis is on building on students’ existing proficiencies rather than filling gaps in students’
knowledge and remediating weaknesses. As a consequence, the teacher’s focus when planning
for instruction is not on students’ limitations but on their current mathematical competencies
and interests, as these constitute resources on which the teacher can build. More generally,
effective mathematical pedagogy places students’ reasoning at the center of instructional
decision making. As a consequence, the ongoing assessment of students’ reasoning is an
integral aspect of instruction, not a separate activity conducted after the fact to check whether
goals for students’ learning have been achieved. A key characteristic of accomplished teachers
is that they continually adjust instruction, as informed by these ongoing assessments.

One of the strengths of Anthony and Walshaw’s synthesis is that it provides the reader with
a concrete image of what effective mathematical pedagogy looks like. Anthony and Walshaw
emphasise that a respectful, non-threatening classroom atmosphere in which all students feel
comfortable in making contributions is necessary but not, by itself, sufficient. As they document,
the research findings indicate unequivocally that it is also essential that classroom activity
and discourse focus explicitly on central mathematical ideas and processes. The selection of instructional tasks is therefore critical. On the one hand, it is important that task contexts or scenarios are accessible to all students, regardless of cultural background. On the other, the teacher should be able to capitalise on students’ solutions to support their development of increasingly sophisticated forms of mathematical reasoning. Thus, when designing and selecting tasks, the teacher has to take account both of students’ current competencies and interests and their long-term learning goals. As Anthony and Walshaw discuss in chapter 5, an important way in which the teacher can build students’ solutions is by introducing judiciously chosen tools and representations. A second, equally important way in which the teacher can capitalise on the potential of worthwhile mathematical tasks is to engage students in justification, abstraction, and generalisation (see chapter 4), by doing which they learn to speak the language of mathematics.

The image of effective mathematical pedagogy that emerges from Anthony and Walshaw’s synthesis is of teaching as a coherent system rather than a set of discrete, interchangeable strategies. This pedagogical system encompasses:

- a non-threatening classroom atmosphere;
- instructional tasks;
- tools and representations;
- classroom discourse.

To see that these four aspects of effective pedagogy constitute a system, note that the way in which instructional tasks are realised in the classroom and experienced by students depends on the classroom atmosphere, the tools and representations available for them to use, and the nature and focus of classroom discourse. And because effective pedagogy is a system, it makes little sense to think of student learning as being caused by isolated teacher actions or strategies. It is for this reason that Anthony and Walshaw speak of mathematical learning being occasioned by teaching. In using this term, Anthony and Walshaw emphasise the teacher’s proactive role in supporting students’ development of increasingly sophisticated forms of mathematical reasoning.

In addition to highlighting the systemic character of effective mathematical pedagogy, Anthony and Walshaw make good on the charge to develop an ecological model of learning that links what is happening in the classroom to issues of race, culture, and language, and to the school contexts in which teachers develop and revise their instructional practices. A concern for issues of equity permeate the entire report but come to the fore in the discussion of school–home partnerships that take the diverse cultures of students and their families seriously and treat them as instructional resources.

Anthony and Walshaw make it clear that it is essential to view school contexts as settings for teachers’ ongoing learning. In a very real sense, these settings mediate the extent to which high quality teacher professional development will result in significant changes in teachers’ classroom practices. Anthony and Walshaw’s synthesis documents that mathematics instruction that places students’ reasoning at the center of instructional decision making is demanding, uncertain, and not reducible to predictable routines. The available evidence indicates that a strong network of colleagues constitutes a crucial means of support for teachers as they attempt to cope with these uncertainties and the loss of established routines. Consequently, there is every reason to expect that improvement in teachers’ instructional practices and student learning will be greater in schools where mathematics teachers participate in learning communities whose activities focus on central mathematical ideas and how to relate them to student reasoning. The value of teacher learning communities in turn foregrounds the critical role of the principal as an instructional leader.

Historically, teaching and school leadership have been loosely coupled, with the classroom being treated as the preserve of the teacher while school leaders managed around instruction. Recent research findings demonstrate the limitations of this type of school organisation
in supporting the improvement of teaching on any scale. These findings also indicate that principals can play a key role in supporting the emergence of a shared vision of what effective mathematical pedagogy looks like and in supporting teacher collaboration that focuses on challenges central to the development of effective pedagogy. This alternative type of school organisation is characterised by reciprocal accountability. Teachers are accountable to principals for developing increasingly effective pedagogical practices and principals are accountable to teachers to create opportunities for their ongoing learning. Changes of this type in the relations between teachers and school administrators are far reaching and might be viewed as too radical. It is, however, sobering to note that previous large-scale efforts to improve the quality of classroom instruction have rarely produced lasting changes in teachers’ practices. Research into educational leadership and policy indicates that this history is due in large part to the failure to take into account the institutional settings in which teachers develop and refine their instructional practices.

The broader policy and leadership literature strongly indicates that the improvement of mathematics instruction on the scale being attempted in New Zealand is not simply a matter of providing high quality teacher professional development. It also has to be framed as a problem for schools as educational organisations that structure the institutional settings in which teachers develop and revise their instructional practices. My reading of this Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau is that Anthony and Walshaw have distilled valuable lessons from the available research, thereby positioning New Zealand educators to succeed where others have failed.

Paul Cobb
Professor of Mathematics Education
Vanderbilt University, Tennessee

Note: The second Hans Freudenthal Medal of the International Commission on Mathematical Instruction (ICMI) was awarded to Professor Paul Cobb in 2005, “whose work is a rare combination of theoretical developments, empirical research and practical applications. His work has had a major influence on the mathematics education community and beyond.”

Early Childhood Education

This Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau is a ‘must read’ for those in the early childhood sector who want an insight into what effective mathematical pedagogy looks like in an early childhood service. The synthesis acknowledges the vital role that quality early childhood education plays in the mathematical development of infants and young children. It also provokes early childhood teachers to reflect on practice: their mathematical awareness of the environment, the depth of their mathematical knowledge, and the importance of effective teaching and learning strategies that will support children’s optimal engagement in mathematical experiences. The extensive, wide-ranging research information is effectively balanced by vignettes which involve the reader in meaningful mathematical experiences that illustrate the possibilities for supporting mathematical learning. Effective distribution of the synthesis would enhance teaching and learning outcomes in early childhood services.

Faith Martin
Director, Massey Child Care Centre
NZEI Te Riu Roa

NZEI Te Riu Roa welcomes this Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau, particularly as it takes for its starting point the assertion that “all children can learn mathematics”. This key message is at the heart of every teacher’s commitment to the mathematical learning of his or her students.

The synthesis recognises the complexity of teaching, particularly given the diverse learning needs of the students in our classrooms and centres and the necessity for specialised knowledge of mathematics. But the writers consistently underline the power that teachers have to make a difference: “It is what teachers do, think and believe (that) significantly influences student outcomes.”

A teacher’s role, whether in a school or a centre, includes the design of activities that help students to construct meaning and think for themselves. To achieve such outcomes, teachers need to appreciate the part that mathematics plays in the world around them, what the big mathematical ideas are, and how the concepts that they teach fit in with those ideas. They need to know how to teach knowledge and skills, how to match new learning with students’ prior knowledge, and which activities effectively encourage understanding and learning. Teachers also need to be conscious of developing attitudes and values. They need to create opportunities for their students to develop a critical eye and, in the context of this synthesis, a critical mathematical eye.

The primary purpose of the synthesis is to identify evidence that links pedagogical practice with effective mathematics outcomes for students. To achieve this, the writers have drawn on national and international research that contributes to our understanding of what works in mathematics education.

When reviewing the synthesis in its draft form, NZEI teachers were particularly pleased to read the chapter, Mathematics Practices Outside the Classroom, which they saw as contributing to a constructive environment and encouraging of good practice. The synthesis explores ways in which parents can contribute to their children’s mathematical development and ways in which schools can strengthen links with the home. If teachers are to successfully fulfil expectations, such links are likely to be vital. Teachers were also pleased to see the importance of school leadership recognised.

NZEI sees the Effective Pedagogy in Mathematics/Pāngarau BES as being of great benefit to teachers, teacher educators, and policymakers. The research identified in the synthesis, together with the case studies and vignettes, has the potential to stimulate much constructive professional discussion. To maximise its potential for teachers, it will need to be accompanied by professional learning opportunities and time for reflection and discussion in the school or centre setting.

Irene Cooper
National President
Te Manukura
NZEI Te Riu Roa
**Post Primary Teachers’ Association**

Tēnā koutou, tēnā koutou, tēnā tatou katoa.

PPTA welcomes this Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau. It is the result of a very thorough process, inclusive of the expertise of practitioners. The final report reflects and caters to their realities, and provides some very interesting and thought-provoking reading for teachers themselves, and for those involved in the pre-service and in-service education of mathematics teachers. At the same time, the research highlights the shortage of outcomes-linked research evidence specific to secondary school mathematics teaching and we hope that as a result of this BES, New Zealand researchers will step up to fill this gap.

Debbie Te Whaiti
President
New Zealand Post Primary Teachers’ Association

**Teacher Educators**

The Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau succeeds in providing a systematic treatment of relevant outcomes-based evidence for what works for diverse learners in the New Zealand education system. One of the strengths of the document is the central positioning given by its authors to a broad notion of diversity.

Teacher educators, both initial and ongoing, will find that the BES is an invitation to engage—as teachers and as researchers—with a wide range of national and international studies. The document succeeds in preserving the complexity of pedagogical approaches through careful structuring and presentation. Well chosen classroom vignettes capture the essence of pedagogical issues for use in initial and ongoing teacher education. The CASEs are likely to prove particularly valuable for teachers by demonstrating how research can inform classroom practice.

The BES also presents a challenge to New Zealand researchers by identifying areas in which there is a paucity of outcomes-based evidence. Such evidence is scarce for Māori-medium mathematics classrooms. The senior secondary area is generally not well represented and a wider range of early childhood contexts needs to be investigated. The CASEs highlight for teacher educators the possibilities of writing up research projects undertaken as part of ongoing teacher education initiatives, and encourage them to gather further evidence to support practice.

The importance to mathematics education of the outcomes-based research evidence represented in this synthesis cannot be overstated. It is to be hoped that the value of the Iterative BES programme is widely recognised, and that it has the impact on policy and practice that it ought.

Joanna Higgins
Director, Mathematics Education Unit and Associate Director,
Jessie Hetherington Centre for Educational Research
Victoria University of Wellington
Māori-medium Mathematics

E nga mana, e nga reo, tēnā koutou katoa.

For the last 20 years, the teaching of pāngarau (mathematics) has played a significant role in the revitalisation of te reo Māori. The Effective Pedagogy in Mathematics/Pāngarau BES recognises the close relationship that exists between language and the learning and teaching of mathematics.

The BES identifies a range of major considerations and challenges for teachers and all those involved in Māori-medium education. The research makes it clear that mathematical outcomes for students are affected by a complex network of interrelated factors and environments, not just individual preferences or the language of instruction. By identifying the key elements in this network and discussing the relevant research, the writers have created what should prove a very useful resource.

The BES highlights the paucity of research into Māori-medium mathematics education, particularly in the area of teacher practice.

Tony Trinick
Māori-medium mathematics educator
Faculty of Education
The University of Auckland

Pasifika

E rima te'arapaki, te aro'a, te ko'uko'u te utuutu, 'iaku nei.
Under the protection of caring hands there's feeling of love and affection.

The Best Evidence Synthesis of Effective Pedagogy in Mathematics/Pāngarau has drawn together a comprehensive synthesis of evidence that relates to quality mathematics pedagogical practices. Its particular strength is that it provides stimulating and thought-provoking reading for a range of stakeholders and at the same time affirms that there is no one, specific, ‘quality’ pedagogical approach. Rather, it directs attention to many effective approaches which make a difference for all mathematics learners. The vignettes are an added strength; they make the theoretical structures they illustrate accessible to a wider audience.

The synthesis highlights the shortage of outcomes-linked research evidence concerning quality teaching and learning for Pasifika students at all levels of schooling. It also highlights the importance of a culture of care. How this translates into quality outcomes for Pasifika students requires the attention of New Zealand researchers.

Roberta Hunter
Senior Lecturer
School of Education Studies
Massey University, Albany Campus
The Effective Pedagogy in Mathematics/Pāngarau BES sets out to uncover and explain the links between what we do in mathematics education and what the outcomes are for learners. The result is a valuable resource that can be used to enhance a wide range of outcomes for diverse learners. These include the ability to think creatively, critically, strategically and logically; mathematical knowledge; enjoyment of intellectual challenge; self-regulatory, collaborative and problem-solving skills; and the disposition to use, enjoy and build upon that knowledge throughout life.

The BES reflects the outstanding scholarly work and professional leadership of co-authors Drs Glenda Anthony and Margaret Walshaw of Massey University. They are the first to use the new Guidelines for Generating a Best Evidence Synthesis and follow the collaborative development process that is central to the Iterative BES Programme. They have consulted tirelessly and responsively with a wide range of early childhood teachers, primary and secondary teachers, principals, advisers, researchers, policy workers and teacher educator colleagues from across New Zealand, and with international colleagues. The Ministry of Education acknowledges and values all these contributions—and those of the formative quality assurers, whose affirmations and challenges have been so helpful in optimising the quality and potential usefulness of this BES.

The BES celebrates and returns to early childhood educators, teachers, teacher educators and researchers a record of their professional work, highlighting the complexity of that work, and suggesting how research evidence can be a valuable resource to inform their ongoing work and that of their colleagues. From the first vignette explaining how mathematical learning can be embedded in waiata (Māori song) and dance, the vignettes bring children’s learning in mathematics to life. The underlying explanations and theoretical findings have the power to inform practice in ways that are relevant and responsive to the learners in any particular centre or classroom.

The challenge now is for us all is to use this resource in ways that will support further systemic development in mathematics education, with strengthened outcomes for diverse learners. In many cases, the BES will affirm what is already happening, but it will be the points of challenge that take us forward. Individual teachers have already engaged with the BES in its draft form, and some report remarkable insights and developments in their practice. But it is only through the wider and systemic development of the conditions that support effective practice for diverse learners that improvements will proliferate and become self-sustaining. The findings emerging from the outcomes-linked professional learning and development BESs should be an invaluable resource in determining how to generate changed practice on such a scale.

Many teachers and early childhood educators have indicated that they want to read this BES for themselves, and to do this they need time. They need time to read, discuss and consider how they can use relevant BES findings in response to diagnostic information about the mathematical understandings of the children and young people they teach. They also need time to participate in professional learning communities. The Teacher Professional Learning and Development BES finds that such participation doesn’t guarantee better outcomes for students, but it is a consistent feature of teacher professional learning that does have a strong positive impact.

The same BES highlights the important role that external expertise with strong pedagogical content knowledge can play in facilitating and supporting changes in practice that impacts positively on student outcomes. Such expertise can be vital in engaging teachers’ theories and challenging problematic discourses. The findings do, however, caution that ‘experts’ need more than good intentions—in the worst-case scenario, teacher professional development can actually impact negatively on student achievement. This finding calls for careful and iterative evaluation of the effectiveness of all professional development.
The teacher education community in New Zealand has already made a foundational contribution to this BES with its engagement in the research and development reported in this BES, and its advice to the BES writers. As the Teacher Professional Learning and Development BES\(^1\) will show, some of our most effective professional development has been taking place as part of the Numeracy Development Projects (NDP)—with effect sizes twice those attained in England\(^5,6,7\).

The primary and early childhood teachers’ union, NZEI, confirms what the evaluation reports have been saying: that teachers who have been involved in the NDP value the transformational experiences this professional learning has afforded them. Two teachers from a Hawkes Bay school explained to me recently that, as a result of professional learning undertaken through the NDP, they have changed the way they work across the curriculum—they now listen more, are more diagnostic, and they place much more emphasis on children articulating and sharing their learning strategies. The dynamic, reflective, nation-wide learning community of researchers, teacher educators, teachers, and other educators created by the NDP and its Māori-medium counterpart, Te Poutama Tau, has been inspirational for BES.

If the mathematics BES is to serve New Zealand education well, the teacher education and research communities must make it a ‘living’ BES by building on the powerful insights and exemplars it makes available, addressing the gaps, and ensuring a cumulative and increasingly dynamic shared knowledge base about what works for learners in New Zealand education. To assist in this collaborative work, the New Zealand Council for Educational Research is creating a database of relevant New Zealand education theses. It has already built a database to support this document, with live links to the electronic version so that readers can quickly access either the full text or bibliographic details for some of the most helpful articles that have informed the synthesis. These links are also listed in the print version.

It is our hope that this BES will stimulate readers to let the Iterative Best Evidence Synthesis Programme know of other/new research and development that should feature in future iterations of the synthesis. Such research needs to clearly document demonstrated or triangulated links to student outcomes (see the Guidelines for Generating a Best Evidence Synthesis Iteration, found on the BES website\(^9\)), and preferably show larger positive impacts on desired outcomes for diverse learners. We are especially seeking studies of research and development in New Zealand contexts, but we are also interested in information on overseas studies that show particularly large impacts on diverse learners. Please send details to best.evidence@minedu.govt.nz.

In the New Zealand context, where schools and centres are self managing, principals and centre leaders have a critical role to play in supporting their staff to realise the potential of this BES. The Teacher Professional Learning and Development BES indicates that, in the case of the most effective school-based interventions, principals and others in leadership roles have actively supported the development of a learning culture amongst their teachers.

For centuries, societies have required their education systems to sort children into successes and failures. Knowledge societies, such as our own, require much more. Our challenge is to ensure that all our children flourish as learners, strong in their own identities, and confident global citizens.

To achieve such goals, we need to value, build upon, and go beyond the craft practice traditions that require each teacher to ‘rediscover the wheel’. The Effective Pedagogy in Mathematics/Pāngarau BES has been designed to serve as a resource and catalyst for strengthened practice, innovation, and systemic learning. By using it, and by making learner outcomes our touchstone, we can work together to give our children a mathematics education that prepares them well for the opportunities and challenges that will be their future.

Adrienne Alton-Lee
Chief Education Adviser
Iterative Best Evidence Synthesis Programme
New Zealand Ministry of Education


3 Ibid.

4 Timperley et al., to be published 2007.


6 Timperley et al., to be published 2007.


8 http://educationcounts.edcentre.govt.nz/goto/BES
**Authors’ Preface**

**What is a Best Evidence Synthesis in Mathematics?**

A best evidence synthesis draws together available evidence about what pedagogical approaches work to improve student outcomes in Mathematics/Pāngarau. This synthesis is part of the Iterative Best Evidence Synthesis (BES) Programme established late in 2003 by the Ministry of Education to deepen understanding of what works in education. The programme involves policy, research, and practice in collaborative knowledge building, aimed at maximising desirable outcomes for the diverse learners in the New Zealand education system.

This best evidence synthesis in Mathematics/Pāngarau plays a key role in knowledge building for New Zealand education. As a capability tool, it identifies, evaluates, analyses, and syntheseses what the New Zealand evidence and international research tell us about quality mathematics teaching. It shows us how different contexts, systems, policies, resources, approaches, practices, and influences all impact on learners in different ways. Importantly, it illuminates what the evidence suggests can optimise outcomes for diverse mathematics learners.

**The importance of dialogue**

The development of this BES has been shaped by the Guidelines for Generating a Best Evidence Synthesis Iteration (Alton-Lee, 2004) and informed by dialogue amongst policy makers, educators, researchers and practitioners. Right from the very early stages of its development, the health-of-the-system perspective taken in this synthesis has ensured that we have listened to and responded to the viewpoints of a wide range of constituencies. Our interactions with these multiple communities have revealed to us the key roles that infrastructure, context, settings, and accountabilities play in a system that is functioning effectively for all its learners. Our various stakeholders have challenged us not only to produce better and more relevant educational research but to consider how this knowledge base might best be used. It is our hope that this discussion across sectors will be ongoing.

We have received a strong and positive response to the best evidence synthesis work from New Zealand’s primary and post-primary teacher associations. Both have reported on how helpful the synthesis is to their core professional work. For example, the New Zealand Educational Institute (NZEI) writes: “In our view, the writers have drawn on national and international research which contributes to an understanding of what works in mathematics education; they have identified the significance of the context and ways in which to strengthen practice … We liked the ... underpinning view that all children can learn mathematics” (p. 2). The representative for the Post Primary Teachers’ Association at the Quality Assurance Day is reported as saying: “There are numerous wonderful ideas in the synthesis, and I found myself repeatedly jolted into possibilities for my own classroom resources.” In addition, a group of initial and ongoing mathematics teacher educators have welcomed the “sophisticated treatment of diversity” and the way in which “the complexity of pedagogical approaches is preserved” (Victoria University of Wellington College of Education, 2006, p. 1).

**Writing for multiple audiences**

Our task was to make the findings of the synthesis accessible to and of benefit to a range of educational stakeholders. At one level of application, it is intended to provide a strengthened basis of knowledge about mathematics pedagogical practices in New Zealand today. The evidence it produces is expected to inform teacher educators within the discipline of mathematics education about effective pedagogical practice. At another level, the synthesis attempts to make transparent to policy makers and social planners an evidential basis for quality pedagogical approaches in mathematics. At a third level, the synthesis is expected to benefit practitioners and assist them in doing the best possible job for diverse learners in their classrooms.
Our approach to the “almost overwhelming task” (Cobb, 2006) of writing with several levels of application in mind has been to draw on both formal and informal approaches. We have offset the ‘academic’ language of the BES by including a series of vignettes that expand upon broad findings. We have received feedback from a range of sources that these vignettes bring the reality of classroom life to the fore and, in particular, do not minimise the complexities of actual practice. We hope that researchers, policy makers and practitioners alike will see in the vignettes theoretical tools that have been adapted and used by actual teachers.

**The BES as a catalyst for change**

This best evidence synthesis in mathematics does more than synthesise and explain evidence about what works for diverse learners. By bringing together rigorous and useful bodies of evidence about what works in mathematics, the project plays an important function as a catalyst for change. It is designed to help strengthen education policy and educational development in ways that effectively address both the needs of diverse learners and patterns of systemic underachievement in New Zealand education. It is written with the intent of stimulating activity across practitioners, policy makers, and researchers and so to strengthen system responsiveness to educational outcomes for all students.

The writers anticipate that reflection on the findings will lead to sustainable educational development that has a positive impact on learners. It will create new insights into what makes a difference for our children and young people. Reflection on the findings will also spark new questions and renewed, fruitful engagement with mathematics education. These new questions, in turn, will render the BES a snapshot in time—provisional and subject to future change.

**Key features**

Key features of the BES are:

- Its teacher orientation. Its view is towards a strengthened basis of knowledge about instructional practices that make a difference for diverse groups of learners.
- Its cross-sectoral approach. Its scope takes in the teaching of children in early childhood centres through to the teaching of learners in senior secondary school classrooms.
- Its inclusiveness. It documents research that reveals significant educational benefits for a wide range of diverse learners. It pays particular attention to the mathematical development of Māori and Pasifika students and documents research that captures the multiple identities held by New Zealand learners.
- Its breadth of search coverage. It reports on the characteristics of effective pedagogy, following searches through multiple national databases and inventories as well as masters’ projects and theses. It provides comprehensive information about effective teaching as evidenced from small cases, large-scale explorations, and short-term and longitudinal investigations.
- Its local character. It makes explicit links between claims and bodies of evidence that have successfully translated the intentions and spirit of the Treaty of Waitangi. It identifies research relevant to the particular conditions and contexts in New Zealand, both in mathematics education in particular and in education in general, in relation to the principles and goals of *Te Whāriki* for early childhood settings and *The Curriculum Framework*, for teachers in English or Māori-medium settings.
- Its global linkages. It connects local sources with the international literature. It identifies important Australian and international work in the area and evaluates that wide-ranging resource in relation to similarities and differences in cultures.
populations and demographics between the country of origin and New Zealand.

- Its responsiveness to concerns about democratic participation. It heeds the concern about the development of competencies that equip students for lifelong learning. This orientation coincides with the national mathematics curriculum objective of developing those knowledges, skills, and identities that will enable students to meet and respond creatively to real-life challenges.

- Its quality assurance measures. It is guided by principles of transparency, accessibility, relevance, trustworthiness, rigour, and comprehensiveness. These principles form the backdrop to the selection and systematic integration of evidence.

- Its strategic focus on policy and social planning. It uses a health-of-the-system approach to address one of the most pressing problems in education, provide a direction for future growth, and push effective teaching beyond current understandings.

- Its provisional nature. The project is an important knowledge-building tool, creating new insights from what has gone before, and will be updated in the light of findings from new studies. The findings are, above all, 'of the moment' and open to future change.

References


Executive Summary

The Effective Pedagogy in Mathematics/Pāngarau: Best Evidence Synthesis Iteration (BES) was funded by a Ministry of Education contract awarded to Associate Professor Glenda Anthony and Dr Margaret Walshaw at Massey University. The synthesis is part of the Iterative Best Evidence Synthesis (BES) Programme, established by the Ministry of Education in New Zealand, to deepen understanding from the research literature of what is effective in education for diverse learners. The synthesis represents a systematic and credible evidence base about quality teaching in mathematics and explains the sort of pedagogical approaches that lead to improved engagement and desirable outcomes for learners from diverse social groups. It marks out the complexity of teaching and provides insight into the ways in which learners’ mathematical identities and accomplishments are occasioned by effective pedagogical practices.

The search of the literature focused attention on different contexts, different communities, and multiple ways of thinking and working. Priority was given to New Zealand research into mathematics in early childhood centres and schools, both English- and Ōtorohanga-medium. Personal networks enhanced the library search and facilitated access to academic journals, theses and reports, as well as other local scholarly work. The New Zealand literature was complemented by reputable work undertaken in other countries with similar population and demographic characteristics. Indices, both print and electronic, were sourced, and the search covered relevant publications within the general education literature as well as specialist educational areas. In the end, 660 pieces of research, ranging from very small, single-site studies to large scale, longitudinal, experimental studies, found their way into the report.

Key findings highlight practices that relate specifically to effective mathematics teaching and to positive learning and social outcomes in centres/kōhanga and schools/kura. The findings stress the importance of interrelationships and the development of community in the classroom. They also reveal that both the cognitive and material decisions made by teachers concerning the mathematics tasks and activities they use, significantly influence learning. The findings demonstrate the importance of children’s early mathematical experiences and stress that constituting and developing children’s mathematical identities is a joint enterprise of teacher, centre/school, and family/whānau.

Key findings

In this section, key findings are organised and presented according to five themes: the key principles underpinning effective mathematics teaching, the early years, the classroom community, the pedagogical task and activity, and educational leadership and centre–home and school–home links.

Key principles underpinning effective mathematics teaching

Teachers who enhance positive social and academic outcomes for their diverse students are committed to teaching that takes students’ mathematical thinking seriously. Their commitment to students’ thinking is underpinned by the following principles:

- an acknowledgement that all students, irrespective of age, have the capacity to become powerful mathematical learners;
- a commitment to maximise access to mathematics;
- empowerment of all to develop mathematical identities and knowledge;
- holistic development for productive citizenship through mathematics;
- relationships and the connectedness of both people and ideas;
- interpersonal respect and sensitivity;
- fairness and consistency.
The early years

Young children are powerful mathematics learners. Quality teaching guarantees the development of appropriate relationships and support as well as an awareness of children’s mathematical understanding. Research has consistently demonstrated how a wide range of children’s everyday activities, play and interests can be used to engage, challenge and extend children’s mathematical knowledge and skills. Researchers have found that effective teachers provide opportunities for children to explore mathematics through a range of imaginative and real-world learning contexts. Contexts that are rich in perceptual and social experiences support the development of problem-solving and creative-thinking skills.

There is now strong evidence that the most effective settings for young learners provide a balance between opportunities for children to benefit from teacher-initiated group work and freely chosen, yet potentially instructive, play activities. Opportunities for learning mathematics typically arise out of children’s everyday activities: counting, playing with mathematical shapes, telling time, estimating distance, sharing, cooking, and playing games. Teachers in early childhood settings need a sound understanding of mathematics to effectively capture the learning opportunities within the child’s environment and make available a range of appropriate resources and purposeful and challenging activities. Using this knowledge, effective teachers provide scaffolding that extends the child’s mathematical thinking while simultaneously valuing the child’s contribution.

The classroom community

Research has shown that opportunities to learn depend significantly on the community that is developed within centres and classrooms. Thus, people, relationships, and classroom environments are critically important. Whilst all teachers care about student engagement, research quite clearly demonstrates that pedagogy that is focused solely on the development of a trusting climate does not get to the heart of what mathematics teaching truly entails. Teachers who truly care about their students have high yet realistic expectations about enhancing students’ capacity to think, reason, communicate and reflect upon their own and others’ understandings. Research has provided conclusive evidence that effective teachers work at developing inclusive partnerships, ensure that the ideas put forward by learners are received with respect and, in time, become commensurate with mathematical convention and curricular goals.

Studies have provided conclusive evidence that teaching that is effective is able to bridge students’ intuitive understandings and the mathematical understandings sanctioned by the world at large. Language plays a central role. Mathematical language involves more than vocabulary and technical usage; it encompasses the ways that expert and novice mathematicians use language to explain and to justify concepts. The teacher who has the interests of learners at heart ensures that the home language of students in multilingual classroom environments connects with the underlying meaning of mathematical concepts and technical terms. Teachers who make a difference are focused on shaping the development of novice mathematicians who speak the precise and generalisable language of mathematics.

Mathematics teaching for diverse learners creates a space for the individual and the collective. Whilst many researchers have shown that small-group work can provide the context for social and cognitive engagement, others have cautioned that students need opportunities and time to think and work quietly away from the demands of a group. There is evidence that some students, more than others, appear to thrive in class discussion groups. Many students, including limited-English-speaking students, are reluctant to share their thinking in class discussions. Research has also shown that an over-reliance on grouping according to attainment is not necessarily productive for all students. Teachers who teach lower streamed classes tend to follow a protracted curriculum and offer less varied teaching strategies. This pedagogical
practice may have a detrimental effect on the development of a mathematical disposition and on students’ sense of their own mathematical identity.

**Pedagogical tasks and activities**

From the research, it is evident that the opportunity to learn is influenced by what is made available to learners. For all students, the ‘what’ that they do is integral to their learning. The ‘what’ is the result of sustained integration of planned and spontaneous learning opportunities made available by the teacher. The activities that teachers plan, and the sorts of mathematical inquiries that take place around those activities, are crucially important to learning. Effective teachers plan their activities with many factors in mind, including the individual student’s knowledge and experiences, and the participation norms established within the classroom. Extensive research in this area has found that effective teachers develop their planning to allow students to develop habits of mind whereby they can engage with mathematics productively and make use of appropriate tools to support their understanding.

Choice of task, tools, and activity significantly influences the development of mathematical thinking. Quality teaching at all levels ensures that mathematical tasks are not simply ‘time fillers’ and is focused instead on the solution of genuine mathematical problems. The most productive tasks and activities are those that allow students to access important mathematical concepts and relationships, to investigate mathematical structure, and to use techniques and notations appropriately. Research provides sound evidence that when teachers employ tasks for these purposes over sustained periods of time, they provide students with opportunities for success, they present an appropriate level of challenge, they increase students’ sense of control, and they enhance students’ mathematical dispositions.

Effective teaching for diverse students demands teacher knowledge. Studies exploring the impact of content and pedagogical knowledge have shown that what teachers do in classrooms is very much dependent on what they know and believe about mathematics and on what they understand about the teaching and learning of mathematics. Successful teaching of mathematics requires a teacher to have both the intention and the effect to assist pupils to make sense of mathematical topics. A teacher with the intention of developing student understanding will not necessarily produce the desired effect. Unless teachers make good sense of the mathematical ideas, they will not have the confidence to press for student understanding nor will they have the flexibility they need for spotting the entry points that will move students towards more sophisticated and mathematically grounded understandings. There is now a wealth of evidence available that shows how teachers’ knowledge can be developed with the support and encouragement of a professional community of learners.

**Educational leadership and links between centre and home/school**

Facilitating harmonious interactions between school, family, and community contributes to the enhancing of students’ aspirations, attitudes, and achievement. Research that explores practices beyond the classroom provides insight into the part that school-wide, institutional and home processes play in developing mathematical identities and capabilities. There is conclusive evidence that quality teaching is a joint enterprise involving mutual relationships and system-level processes that are shared by school personnel. Research has provided clear evidence that effective pedagogy is founded on the material, systems, human and emotional support, and resourcing provided by school leaders as well as the collaborative efforts of teachers to make a difference for all learners.

Teachers who build whānau relationships and home–community and school–centre partnerships go out of their way to facilitate harmonious interactions between the sectors. There is convincing evidence to suggest that these relationships influence students’ mathematical development. The home and community environments offer a rich source of mathematical experiences on which to build centre/school learning. Teachers who collaborate with parents, families/whānau and
community members come to understand their students better. Parents benefit too: through their purposeful involvement in school/centre activities, by assisting with homework, and in providing suitable games, music and books, they develop a greater understanding of the centre’s or school’s programme. Their involvement also provides an opportunity to scaffold the learning that takes place within the centre or school.

**Overall key findings**

This Best Evidence Synthesis examines the links between pedagogical practice and student outcomes. Consistent with recent theories of teaching and learning, it finds that quality teaching is not simply a matter of ‘knowing your subject’ or ‘being born a teacher’.

Sound subject matter knowledge and pedagogical content knowledge are prerequisites for accessing students’ conceptual understandings and for deciding where those understandings might be heading. They are also critical for accessing and adapting task, activities and resources to bring the mathematics to the fore.

The importance of building home–community and school–centre partnerships has been highlighted in a number of studies of effective teaching.

Early childhood centre researchers have provided evidence that the most effective settings offer a balance between opportunities for children to benefit from teacher-initiated group work and freely chosen, yet potentially instructive, play activities.

Within centres and classrooms, effective teachers care about their students and work at developing interrelationships that create spaces for learners to develop their mathematical and cultural identities.

Extensive research on task and activity has found that effective teachers make decisions on lesson content that provide learners with opportunities to develop their mathematical identities and their mathematical understandings.

Studies have provided conclusive evidence that teaching that is effective is able to bridge learners’ intuitive understandings and the mathematical understandings sanctioned by the world at large.

**Gaps in the literature and directions for future research**

The synthesis provides research information about effective mathematics teaching. Although the scope of researchers’ studies is broad and far-reaching, a number of gaps in the literature are apparent. Research has so far provided only limited information about effective teaching in New Zealand at the secondary school level. Additionally, there is little reported research that focuses on quality teaching for Pasifika students. Few researchers in New Zealand are exploring mathematics in early childhood centres. The New Zealand literature lacks longitudinal, large-scale studies of teaching and learning. Also missing are studies undertaken in collaboration with overseas researchers. Such research is crucially important for understanding teachers’ work and the impact of curricular change. The scholarly exchange of ideas made possible through joint projects with the international research community contributes in numerous ways to the capability of our local researchers.

It is important to keep in mind that, as a knowledge building tool, the synthesis provides insights based on what has gone before. A snapshot in time, it is subject to change as new kinds of evidence about quality teaching become available. Important mathematics initiatives are underway in New Zealand schools and centres. The Numeracy Development Projects, new assessment methods, projects involving information technology, and a greater focus on statistics in the curriculum are just three examples of changes that are currently taking place. All new initiatives require research that monitors and evaluates their introduction and ‘take up’ by centres/schools and the changes in teaching and learning that take place as a result. Such research is necessary to guide future directions in schools, educational policy, and curriculum design.
### 2. Framing the BES

Teaching mathematics is an uncertain and complex practice. Working out what teachers can do to guarantee the best possible job for diverse learners is a challenge for everyone in education. As we shall see from our aims, finding out what teachers do is our primary goal. We shall also see that our aims represent a serious attempt to address real educational problems. The synthesis is therefore both grounded in practice and strategically future-focused. Our intent is to optimise desirable learner outcomes and operationalise educational, social and pedagogical potential.

In this chapter, we develop a theoretical and empirical framework for the BES. We use a grounded approach, investigating how a number of international researchers have tried to come to grips with effective mathematics teaching. The work of the international researchers synthesised here originates from the US, the UK, and Australia as well as from our own country. The approaches the researchers take and the students they focus on are diverse and multi-levelled, spanning the early, primary, and secondary years of mathematics education.

We use their studies and findings as a backdrop to our synthesis. From their descriptions and explanations, we develop a set of guiding principles that will help us conceptualise the work ahead. We explain the framework that seems to us to provide a helpful way of exploring how teachers facilitate learning for diverse students.

#### Aims of the Best Evidence Synthesis

The BES has two central aims:

1. To identify and explain the characteristics of pedagogical approaches that enhance proficiency in Mathematics/Pāngarau.

2. To identify pedagogical approaches that make a significant difference for, and reduce disparity amongst, diverse learners in the early childhood and school years in Mathematics/Pāngarau.

With these two aims foremost in our thinking, in this chapter we explore the kinds of practices, contexts, policies, systems, resources, influences, and approaches that promote democratic access to powerful mathematical understandings. We do this, first in the major studies synthesised in this chapter and later in chapters 4–8, in order to draw together the sorts of pedagogical approaches that lead to improved engagement and desirable outcomes for learners from diverse social groups.

#### A comparative perspective

The Third International Mathematics and Science Study (TIMSS) 1999 Video Study (Hiebert et al., 2003) explored classroom mathematics teaching practices. The Video Study involved seven countries—Australia, the Czech Republic, Hong Kong, Japan, the Netherlands, Switzerland, and the United States—and was undertaken as an adjunct to their participation in the comparative study of student achievement across systems of education in 50 countries. In all, 638 mathematics lessons were collected from year 8 classrooms. The videotapes captured the complexity of teaching right across the school year in all participating countries to ensure the full measure of topics and activities taking place (Hollingsworth, 2003).

Our interest in the Video Study is in exploring the characteristics of teaching that appear to enhance students’ learning. One thing that becomes clear from the descriptions of mathematics classrooms provided is that there might not be a representative lesson structure within a nation. What is more unsettling for those in search of a recipe for effective practice, is that there is no general teaching method for generating high performance amongst year 8 students (Hiebert et al., 2003). Teaching is a process, not a technique. Whilst the pedagogical choices...
made by teachers were similar (for example, nearly all teachers made use of either a textbook or a worksheet), the relative emphasis given to various instructional elements varied markedly from one high-performance country to another. What works for one teacher and one group of students will not necessarily work for another teacher with a different group of students.

In addition to the variation observed in the structure of lessons taught by teachers with different groups of students, commonalities as well as differences in mathematics teaching practice are apparent between different countries (Clarke, 2003). By way of example, take the case of two high-performance countries: Hong Kong and Japan. Like teachers in many other countries, the teachers in these two countries devoted time to reviewing old content, introducing new content and practising new content. However, in the Hong Kong lessons, these pedagogical elements were typically constructed for silent, individual learners, assigned to work on decontextualised problems. In contrast, lessons in Japan took the form of discussion and whole-class solutions to complex problems.

Given the differences in class size, lesson structure and surface-level features of the mathematical tasks, it is difficult to determine what makes a difference for students’ achievement. However, the two factors that the lessons in these two high-achieving countries appear to have in common are the presentation of mathematical concepts and the level of student engagement. Teachers in these countries ensured that they did not downplay the conceptual complexity of the problems presented to students. In their presentation of content matter, they avoided simplifying problems and tended to focus on the relationships and complexities within mathematics (Watson, 2004). Teachers also worked at sustaining high levels of student engagement. When their lessons were observed closely, they were found to involve all learners in activities that generated knowledge. They did this by highlighting the development of reasoning and mathematical rationale and by featuring the generalisation, coherence and logical sequence of mathematical ideas. Lessons included a high percentage of mathematical problems and few repetitions of problems. Teachers in Japan, much more so than teachers from other countries, made explicit use of problems that required students to make connections between mathematical ideas, procedures and properties. This practice was in marked contrast to what teachers in Australia and the United States were observed doing in their lessons.

From the TIMSS Video Study, we can glean that student achievement cannot easily be matched with specifics such as teaching style, nor can it be linked directly with classroom organisation and student grouping. For mathematics teachers, this finding is critically important because it contradicts the common practice in some school systems of labelling learners according to particular learning styles. A case in point is the so-called kinaesthetic learner, who, consigned to a fixed-ability category, is denied engagement with the more abstract mathematical concepts offered to other groups within the class. What appears to be more critical than style or organisation for enhanced performance is the creation of a community of what we would like to call ‘apprentice mathematicians’, actively engaged in and responsive to the cognitive demands of the mathematics at hand. Those demands take many forms and are related in no small way to the subtopics under investigation (Rittle-Johnson & Siegler, 1998).

In an effort to pinpoint culturally specific teaching practices that engage students in the mathematics classroom, Clarke and colleagues’ Learners’ Perspective Study1 (LPS) involves analysis of lesson sequences from within a range of countries. A distinguishing feature of this project is the exploration of learner practices, with the aim of assessing the effectiveness of teacher and learner actions in the promotion of particular forms of student learning. For example, Clarke’s (2004) analysis of 30 lessons taught as three sequences of 10 lessons by three Australian teachers examined specific classroom interaction in relation to the achievement of teachers’ pedagogical goals. Under what Clarke names as ‘lesson events’, it was shown that for Australian teachers, conventional practice is to ‘walk between the desks’. In Clarke’s view, the merits of this practice, termed ‘kikan-shido’ or ‘instruction between desks’, were multiple: first, it provided an opportunity for the teacher to interact with every individual student; second,
student participation and engagement could be monitored and assessed; third, it was clear
that, as a result of their teacher’s probing, prompting, and eliciting of knowledge, students
became more focused and their learning was enhanced.

**Effective numeracy teaching**

While comparative studies paint a picture of what is happening across countries, studies
involving numeracy reforms sketch out more national characterisations. In a landmark UK
study of 90 teachers and over 2000 students, as well as 18 case-study teachers from the larger
sample, Askew, Brown, Rhodes, Johnson, and Wiliam (1997) identified what teachers believed
and understood about numeracy teaching, and related that set of data to student gains. As
with the researchers of comparative studies, Askew and his colleagues found that teachers’
preference for whole-class, grouping, or individualised approaches made little difference
to the achievement of students. Their Effective Teachers of Numeracy project revealed that
highly effective teachers of numeracy in primary schools could be distinguished, first and
foremost, by a coherent set of beliefs and understandings that underwrote their classroom
work. Those beliefs related to (a) their understandings of what being numerate entailed, (b) the
close interrelationship between teaching and learning, and (c) their approaches to presentation
and intervention. In the moment-to-moment interchanges between teacher and students,
effective teachers were shown to work at making conceptual connections between different
mathematical ideas and different topics by making use of a range of symbols, words and
graphics. Student discussion and teacher challenge assisted the firming up of links between
ideas and the development of efficient, conceptually based strategies. Mental skills helped to
sustain those links.

The tasks and activities that teachers presented were important. They engaged students as
well as providing them with the challenge to think mathematically. In contrast, comparatively
less effective teachers of numeracy were less likely to encourage the networking of ideas
and more likely to present knowledge in fragmented and procedural form. Overriding all
the characteristics of effective teaching was a firm belief in the numerical capability of the
students: a belief that students could succeed.

From case studies of ten teachers in the New Zealand Numeracy Development Project (NDP),
Thomas and Ward (2002) also identified a set of common characteristics of effective teachers.
While pedagogical characteristics were similar to those identified by Askew et al. (1997), a
notable feature was the inclusion of strong, positive relationships with students and clear
expectations that students would make progress.

In a similar way to the New Zealand NDP, the Australian Early Numeracy Project sought to
develop students’ mathematics thinking in the early years of school through a professional
development programme aimed at enhancing teachers’ knowledge (Horne et al., 2002). A
framework of key ‘growth points’ was developed to quantify student learning improvement.
Using growth in student learning across all domains as an indicator of effective teaching,

**Clarke and Clarke (2004)** selected six case study teachers. Using multiple data sources, the
practices common to effective teachers of early years mathematics included:

- a focus on important mathematical ideas;
- structured and purposeful tasks that engage children;
- the use of a range of materials, representations, and contexts;
- making connections between mathematical ideas;
- engaging students’ mathematical thinking through a variety of organisational
  structures;
- establishing an effective learning community;
- having high but realistic mathematical expectations of all learners;
- encouraging mathematical reflection;
- using assessment effectively for learning and teaching.
In addition to these organisational and pedagogical strategies, Clarke and Clarke (2004) identified a common set of teacher attributes that supported their quality teaching practices. They noted that the case study teachers believed that mathematics learning can and should be enjoyable, were confident in their own knowledge of mathematics and showed pride and pleasure in their students’ success.

**Professional development and teacher knowledge**

How pedagogical practice can be changed has been the subject of several large-scale international projects, most notably in relation to numeracy reforms in the primary school sector. In England, the National Numeracy Strategy (NNS) reform programme was accompanied by a systematic and standardised national training programme that included video demonstrations of ‘best practice’. The Leverhulme Numeracy Research Programme (Millett, Brown, & Askew, 2004) identified two aspects of teacher beliefs about mathematics and mathematics teaching that might be involved in deep change: beliefs about self-efficacy and beliefs about students. Teachers reported that new ways of listening and doing mathematics with their students helped them develop their own understandings of mathematics. While not identifying these changes in beliefs as indicators of deep change, the research team felt that they were of importance in themselves, providing a stronger foundation upon which to enact more effective pedagogical practices.

The objective of the New Zealand Numeracy Development Project (NDP) is to improve student learning through the development of teacher capability. A key finding to emerge from this large-scale professional development initiative is that teachers who are more successful than others at developing effective reform-based practices appear to be self-sustaining, generative learners (Thomas & Tagg, 2005). They connect what was learned in the professional development project with their own teaching and continue to reflect on and adapt what was learned as they teach (Ell & Irwin, 2006; Higgins, Bonne, & Fraser, 2004). Teachers’ personal beliefs and their inclination to continually learn appear to be intrinsically related to the effectiveness of their pedagogical practices (Bicknell & Anthony, 2004).

The Cognitively Guided Instruction Project (CGI) (Carpenter, Fennema, Franke, Levi, & Empson, 1999) in the US also aims to enhance teacher capability. The intent of the CGI project is “to help teachers understand children’s thinking, give the teachers an opportunity to use this knowledge in their classrooms, and give them time to reflect on what happens as a result of using this knowledge” (Chambers & Hankes, 1994, p. 286–7). The thrust of the project is that a focus on thinking and understanding, rather than coverage of content, better positions teachers to rethink and develop their own knowledge. In turn, students’ learning is enhanced (Carpenter et al., 1989).

The idea that there is a close association between teachers’ knowledge and student gains is compelling and has been substantiated by many other researchers. For example, in the Study of Instructional Improvement (Hill, Rowan, & Ball, 2005), analysis revealed that teachers’ mathematical knowledge positively predicted student gains in mathematics achievement during first and third grades. An important feature of this study was the instrument used to assess mathematical knowledge-in-use for teaching. This task-sensitive measure confirmed the importance of pedagogically based content knowledge in specific teaching practices.
Equitable student access to learning

Understanding, explaining and addressing the processes by which inequities in mathematics continue to be regenerated is a major issue confronting educators worldwide. As we noted in chapter 1, results from international studies such as PISA and national studies and evaluations (e.g., NEMP and NDP) indicate wide disparity in mathematics achievement for students from a range of school levels. Although we have promising 2004 NDP data indicating that there has been a decrease in achievement differentials between ethnic groups, students’ relative mathematical positioning based on ethnic origins remains: “Not only did European and Asian students start the project at higher framework stages, but they made greater progress than Māori and Pasifika students who started at identical framework stages” (Young-Loveridge, 2005, p. 19).

Cobb (e.g., 2002) and others in the US are currently trying to work through some of the underlying problems associated with inequitable student access to learning. Their work is motivated by a concern about the “inequitable distribution of future educational and economic opportunities” (Nasir & Cobb, 2002, p. 93). For them, equitable access is under question if certain groups of students, and not others, are required “to assimilate mainstream beliefs and values at the expense of their cultural identities” (p. 94). Foremost in their work is the idea that knowledge is necessarily social—created in the spaces and activities that individuals share in a web of economic, social and cultural differences. They explore their core themes of equity and diversity through social structures, relations of power, identity and language to reveal the ways in which a social context like the classroom is anything but neutral and to demonstrate the ways in which it reflects the wider social dynamics within society. For them, pedagogical action is more about transformative relationships than about disseminating and consuming knowledge.

In a smaller, but still significant, study in the UK, Watson, De Geest, and Prestage (2003) provide a promising way to address equitable student access to learning. The researchers found that when student proficiencies, rather than deficiencies, dominated their conceptualisations of students, teachers were able to create effective learning environments. Watson and colleagues’ Improving Attainment in Mathematics Project (IAMP) specifically targeted low-attaining secondary students—students who did not know as much mathematics as their age-level peers and, perhaps more importantly, did not know how to learn mathematics. These low attainers came to be classified as such through, for example, disrupted schooling, cultural difference, social and emotional difficulties, lack of specialised teaching, limited teaching methods, low expectations, learned helplessness, reading and writing difficulties, language difficulties, physiological problems and cognitive problems.

In the research literature (e.g., Boaler, Wiliam, & Brown, 2000; Houssart, 2002; Siber, 2003; Zevenbergen, 2003), low attainers customarily learn mathematics via pedagogical strategies that are more procedural and simplified than knowledge generating. Through action research over a two-year period, the IAMP project developed pedagogical innovations with ten teachers and attempted to match teaching effectiveness with student learning, as determined by national test scores, teachers’ assessments, non-routine tasks and other indicators. Driven by hopes for long-term understanding rather than short-term gains, the team sought not only to introduce students to the sorts of practices that distinguish mathematics learners from any others but also to develop student performance and interest in mathematics.

Arising naturally from the goal of developing lasting mathematical understanding was a view of teacher’s work as one of ongoing support for students in developing and sustaining the sorts of practices that contribute to what mathematicians do. These practices, Watson et al. (2003) note, might be listed as: choosing appropriate techniques, generating their own enquiry, contributing examples, predicting problems, describing connections with prior knowledge, giving reasons, finding underlying similarities or differences, generalising structure from diagrams or examples, identifying what can be changed, making something more difficult,
making comparisons, posing their own questions, giving reasons, working on extended tasks over time, creating and sharing their own methods, using prior knowledge, dealing with unfamiliar problems, changing their minds, and initiating their own mathematics.

Over the two years of the project, students showed a greater willingness to engage with mathematics and work with non-routine mathematics questions. They worked longer and more successfully on activities and were prepared to confront tasks that were complex or unfamiliar to them. They became risk takers, contributing to discussions by offering alternative lines of enquiry, posing conjectures, and proving explanations and justifications. And, as a vivid indicator of the development of their mathematical thinking, they were able to generalise from given conditions.

What precisely did the teachers do that made a difference to learners who were previously mathematically disaffected? Although they shared a pedagogical intent to develop students’ mathematical thinking, the teachers did not share a common pedagogical strategy to actualise that intent. Indeed, Watson and De Geest (2005) note that some practices “would have comfortably fitted into a typical ‘reform’ classroom; some would have comfortably fitted into a classroom in which silent textbook work was the norm” (p. 223). However, what most of the teachers agreed upon was the importance of developing and sustaining aspects of practice through which students might come to develop a positive mathematical identity. They viewed teaching as active and purposeful and focused the lesson goals on teaching and mathematical tasks rather than on impending assessment. Watson and De Geest maintain that the kinds of practices that lead to active and purposeful teaching include:

- developing routines of meaningful interaction;
- choosing how to react to correct and incorrect answers;
- giving students time to think and learn;
- working explicitly or implicitly on memory;
- using visualisation;
- relating students’ writing and learning;
- helping students to be aware of progress;
- giving a range of choice;
- being explicit about connections and difference in mathematics;
- offering, retaining and dealing with mathematical complexity;
- developing extended work on mathematics;
- providing tasks that generate concentration and participation.

If teaching mathematics is about enculturating learners into mathematical thinking, then Watson and De Geest (2005) contend that teachers need to make explicit the conceptual networks that underpin mathematics. But more than that: they must give learners the opportunities to construct, create and navigate through a variety of conceptual structures. As teachers know, opportunities to learn depend to some extent on the systems that are set up to support learners’ engagement. Norms and social relations within the systems regulate the patterns of interaction and participation, as well as specific behaviours and aptitudes such as perseverance and learning from mistakes. If these systems are inclusive and empowering, they are able to contribute to learners’ development of mathematical thinking.

From these studies, it is evident that the opportunity to learn is influenced by what is made available to learners. Whatever the task or activity affords or constrains significantly influences the development of mathematical thinking. Watson (2003) contends that while there might be no observable difference in participation practices from one classroom to the next, the ways in which the learner is connected with the mathematical content can be markedly different. This important observation suggests that a focus on sociocultural practices within the centre or classroom environment is not sufficient to explain learning unless it sits alongside an explanation of how the learner is connected to the mathematics.
The same point is stressed in the Australian-based Overcoming Barriers to Learning project. This project is based on the premise that productive learning communities attend to task selection, adaptation and extension and to organisational routines, language genres, problem contexts and modes of communication. The general aim of the study is to identify elements of pedagogical practice that allow teachers to make mathematics explicit and accessible for diverse learners in the classroom (Sullivan, Zevenbergen, & Mousley, 2003). From their investigation into the pedagogical practices of teachers who taught the same content, Sullivan, Mousley, and Zevenbergen (2004) claim that there is a direct connection between the intentions that a teacher communicates, the ways in which the students respond, and the understandings that they generate about the nature of the task. They argue for an explicit pedagogy—one that decodes contextualised problems by responding to the language demands of the task and the explanatory demands of the mathematics under consideration, being aware of the possibility of alienating students through their differential social positionings, and anticipating diverse responses to the task under consideration.

Research studies involving centre, school, family and community partnerships provide exemplars of other ways to support the development of transformative relationships. In their Focus on Results in Math study, undertaken with schools serving mainly economically disadvantaged students across a range of states within the US, Sheldon and Epstein (2005) found that “effective implementation of practices that encouraged families to support their children’s mathematics learning at home was associated with higher percentages of students who scored at or above proficiency on standardised mathematics achievement tests” (p. 196). The project provides compelling evidence that low achievement patterns can be reversed when the learner’s access to knowledge is a prime consideration.

What these last researchers share with all the others that we have discussed in this chapter is an understanding that effective pedagogy foregrounds the learner. In these landmark studies, it is the learner’s access to mathematics and mathematical practices that becomes central. This seemingly simplistic idea goes against the grain of teaching as ‘performance’ or ‘craft’. Rather, effective pedagogy requires that teachers take account of students’ multiple identities, diverse experiences, and wide range of thinking processes. Many teachers have confronted this challenge and taught successfully—in some cases, against all odds. They have done so because they have believed that all students have the right to access mathematical culture. For these teachers, creating access to learning means creating space and time to allow mathematical thinking and acting to take place.

**Conceptualising the synthesis**

We have reported these cutting-edge studies, motivated by the desire to provide a starting point for conceptualising the synthesis. As we have seen in these studies, teaching is enacted in various ways by different teachers and in different classroom settings with different students. The research noted thus far takes as central the idea that teaching is a process, not a technique. In the recent International Congress on Mathematics Education (ICME-10) survey, Relations between Mathematics Education Research and Practice, Sfard (2005, p. 398) reported on the wish of one respondent to “systematically analyse and report … the messy real-life classroom development” as typical of current mathematics education researchers. With regards to current research practice, Sfard also noted that the “basic type of empirical data is a carefully recorded classroom interaction, as opposed to the past attempts to document the learning of the individual student while concentrating on the result rather than on the process of teaching and learning” and that current mathematics education research “emphasizes the broadly understood social context of learning” (p. 398).

What Sfard shares with the international researchers of this chapter is an understanding that pedagogic thinking “prioritises the constitution of learning over the execution of teaching” (Hamilton & McWilliam, 2001, p. 18). Although diverse in focus, the researchers that we have reported on are committed to teaching that is less about transmission or delivery of new
knowledge and more about taking students’ thinking seriously. Their commitment to students’ thinking is underpinned by the following:

- an acknowledgement that all students, irrespective of age, have the capacity to become powerful mathematical learners;
- a commitment to maximise access to mathematics;
- empowerment of all to develop mathematical identities and knowledge;
- holistic development for productive citizenship through mathematics;
- relationships and the connectedness of both people and ideas;
- interpersonal respect and sensitivity;
- fairness and consistency.

We note the strong links between these and the principles that form the foundational practice in early childhood contexts, as outlined in *Te Whāriki*. Those principles are based on a recognition that classroom teaching is a complex activity. The classroom learning community is neither static nor linear. We can more usefully think of it as nested within an evolving systems network. This system might be described as an ecology in which the activities of the teacher and the students—as well as those of the centre/school and the home/community—are mutually constituted through the course of interactions. Thus, “teaching and learning coexist in a web of economic, social, and cultural differences” (Hamilton & McWilliam, 2001, p. 17).

The idea that teaching sits within a nested system draws its inspiration from Vygotskian ideas and the work of post-Vygotskian activity theorists such as Davydov and Radzikhovskii (1985). This body of work proposes a close relationship between social processes and conceptual development. This understanding forms the basis of Lave and Wenger’s (1991) well-known social practice theory, in which the notions of ‘a community of practice’ and ‘the connectedness of knowing’ are central features, and in which individual and collective knowledge emerge and evolve within the dynamics of the spaces people share and within which they participate. Lave and Wenger write:

> A community of practice is a set of relations among persons, activity, and world, over time and in relation with other tangential and overlapping communities of practice. A community of practice is an intrinsic condition for the existence of knowledge, not least because it provides the interpretive support necessary for making sense of its heritage. Thus, participation in the cultural practice in which any knowledge exists is an epistemological principle of learning. (p. 98)

Finding out what works for diverse mathematics learners in the system requires taking into account the processes operating at the macro-level of the system, involving policy, institutional governance, families and whànau, and communities, as well those processes found at the micro-level of the classroom. Given the scope of the system, the features of quality practice for diverse learners necessarily constitute a large matrix of practice, consisting of multiple dimensions and complex relationships between its parts. Attending to the health of the system means attending to what happens to the system’s constituent parts and their interrelationships. Studies have revealed how interactions between elements within the system profoundly influence the individual’s construction of mathematical ways of knowing (e.g., Boaler, 2003; Watson et al., 2003).

One of the important things that derives from these findings is the contingency of student outcomes on a network of interrelated factors and environments: outcomes are not so much caused by teaching practice as they are occasioned by those practices. Social and academic outcomes are occasioned by a complex web of relationships around which knowledge production and exchange revolve (Walshaw, 2004). Within the network, we can identify specific components within the learning environment. These we have characterised as (a) the organisation of activities and the associated norms of participation in each phase, (b) discourses, particularly norms of mathematical argumentation, (c) the instructional tasks, and d) the tools and resources that learners use. In chapter 3, which follows, the discussion is organised around these four major
components of the learning environment. The two school-based chapters in the synthesis have also been structured around these components: chapter 4 looks at the organisation of activities and the norms and discourses within the classroom; chapter 5 explores the instructional tasks and the tools and resources that students use.

References


Appendix 1: Locating and Assembling BES Data

Using the ‘health-of-the-system’ approach, we sought to examine the various factors implicated in the creation of an effective learning community. We investigated a number of measures that fell naturally from the ‘what’, ‘why’, ‘how’, and ‘under what conditions’ questions concerning pedagogical approaches that facilitate learning for all students. The task was a considerable one, involving information management, the engagement of advisory and audit groups, and the seeking of contributions from the education community in general and the mathematics education community in particular. This level of engagement ensured that the Best Evidence Synthesis would be inclusive of views from across the community.

Our initial search strategy required us to pay attention to different contexts, different communities, and multiple ways of thinking and working. With this in mind, we undertook a literature search that crossed national and international boundaries. We used a range of search engines as well as personal networks to help us find academic journals, theses, projects, and other scholarly work with a focus on mathematics in New Zealand schools and centres, and by selected authors worldwide. We searched both print indices and electronic indices, endeavouring to make our search as broad as possible within the limits of manageability. This search took into account relevant publications from the general education literature and from the literature that relates to specialist areas of education. The search covered:

- key mathematics education literature including all major mathematics education journals (e.g., *Journal for Research in Mathematics Education*, *Educational Studies in Mathematics*, *Journal of Mathematics Teacher Education*, *For the Learning of Mathematics*, *The Journal of Mathematical Behaviour*), international conference proceedings (e.g., PME, ICME), Mathematics Research Group of Australasia publications, and international handbooks of mathematics education (e.g., Bishop et al., 2003);
- relevant New Zealand-based studies, reports, and thesis databases, supported by input from the professional community and the Ministry of Education;
- education journals (e.g., *American Educational Research Journal*, *British Educational Research Journal*, *Cognition and Instruction*, *The Elementary School Journal*, *Learning and Instruction*, etc.) and New Zealand work (e.g., SAMEpapers, SET, NZIES);
- specialist journals and projects, especially those located within the wider education field (e.g., *New Zealand Research in Early Childhood Education: Journal of Learning Disabilities*);
- landmark international studies including TIMSS, PISA, the UK Leverhulme projects.

This search strategy led us to a large body of literature that had something to say about facilitating mathematics learning: the total number of sourced references was just over 1100.

Table 1 categorises these references by source:

<table>
<thead>
<tr>
<th>Source of data</th>
<th>Relative frequency (n = 1100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics education journals</td>
<td>24%</td>
</tr>
<tr>
<td>Mathematics education reports, books, handbooks</td>
<td>16%</td>
</tr>
<tr>
<td>Mathematics education conference proceedings</td>
<td>15%</td>
</tr>
<tr>
<td>Theses and projects</td>
<td>6%</td>
</tr>
<tr>
<td>General education reports, books, handbooks</td>
<td>10%</td>
</tr>
<tr>
<td>General education journals, reports, and proceedings</td>
<td>19%</td>
</tr>
<tr>
<td>Specialist journals</td>
<td>10%</td>
</tr>
</tbody>
</table>
All entries were stored and categorised using EndNote. To assist in the initial synthesis, we distinguished between ‘research’ and ‘discussion document’, and categorised entries according to (a) our ‘diversity’ descriptors (e.g., ethnicity, gender, socioeconomic), (b) centre/school level, and (c) country-of-origin of the data.

These categories and sub-divisions served as a useful starting point for overviewing the literature and allowed us to foreground our fundamental intent to be responsive to diversity. In addition, by classifying entries according to sector and country of origin, we gave ourselves a constant reminder of the need to be inclusive of all perspectives and interests. This inclusiveness gave us a body of literature comprising diverse frameworks and eclectic methodological and analytic approaches.

**Selecting the evidence**

Given the complexity of the teaching and learning process, it is not an easy matter to link specific outcomes with specific pedagogical approaches. In our first pass through the literature, we noted that studies could claim that student achievement was influenced by pedagogical practice much more readily than they could explain how that practice affected student achievement. Many studies offered detailed explanations of student outcomes yet failed to draw conclusive evidence about how those outcomes related to specific teaching practices. Others provided detailed explanations of pedagogical practice yet made unsubstantiated claims about, or provided only inferential evidence for, how those practices connected with student outcomes.

Granted, we were not looking for linear explanations. As Sfard (2005) points out, the complexity of the teaching–learning relationship “precludes the possibility of identifying clear-cut cause–effect relationships” (p. 407). What we were searching for were studies that were able “to offer a developing picture of what it looks like for a teacher’s practice to cultivate student [proficiency]” (Blanton & Kaput, 2005, p. 440). We were searching for studies that offered a “detailed look at how [teachers’] actions played out in the classroom and how students were involved in this” (Blanton & Kaput, 2005, p. 435) and the sorts of mathematical proficiency that resulted. Specifically, we were seeking studies that offered not just detailed descriptions of pedagogy and outcomes but rigorous explanation for close associations between pedagogical practice and particular outcomes.

Paying attention to diverse forms of research evidence required our serious consideration of the literature relating to disparate factors from different sectors and representative of different time periods. Luke and Hogan (in press) note that what is distinctive about the approach undertaken in the New Zealand Best Evidence programme “is its willingness to consider all forms of research evidence regardless of methodological paradigms and ideological rectitude, and its concern in finding contextually effective appropriate and locally powerful examples of ‘what works’... with particular populations, in particular settings, to particular educational ends” (p. 5). We have included many different kinds of evidence that take into account human volition, programme variability, cultural diversity, and multiple perspectives. Each form of evidence, characterised by its own way of looking at the world, has led to different kinds of truth claims and different ways of investigating the truth. Our pluralist stance left us free to consider the relative strengths and weaknesses of different methodological approaches.

A fundamental challenge for this BES has been to demonstrate a basis for knowledge claims. We are absolutely aware that, like data selection, assessment of evidential claims from secondary sources is a highly perspectival activity. “Even those gazing down a microscope are as capable of finding what they expect to find, or want to find, as anyone else” (Davies, 2003). In response to this challenge, studies have been reported in a way that will make the original evidence as transparent as possible. Informed by the Guidelines for Generating a Best Evidence Synthesis Iteration 2004, we included studies that:

- provided a description of the context, the sample, and the data;
offered details about the particular pedagogy and the specific outcomes;
connected research to relevant literature and theory;
used methods that allow investigation of the pedagogy–outcome link;
yielded findings that illuminated what did or did not work.

The *Guidelines for Generating a Best Evidence Synthesis Iteration* allowed us to deal not only with a diversity of research topics, approaches, and methods, but also to capture differences in the context, practices, and ways of thinking of researchers. The method employed in this BES for evaluating validity required us to look at the ways different pieces of data meshed together and to determine the plausibility, coherence, and trustworthiness of the interpretation offered.

Assessments about the quality of research depend to a large extent on the nature of the knowledge claims made and the degree of explanatory coherence between those claims and the evidence provided. What we were looking for was the explanatory power of the stated pedagogy–outcome link. When assessing the nature and strength of the causal relations between pedagogical approaches and learning outcomes, we were guided by Maxwell’s (2004) categorisations of two types of explanations of causality. The first type, the *regularity view of causation*, is based on observed regularities across a number of cases. The second type, *process-oriented explanations*, sees “causality as fundamentally referring to the actual causal mechanisms and processes that are involved in particular events and situations” (p. 4). Cobb argues (2006, personal communication) that regularity explanations are particularly useful for policy makers, while process-oriented explanations are relevant to teachers, who are concerned with “the mechanism through which and the conditions under which that causal relationship holds” (Shadish, Cook, & Campbell, 2002, p. 9, cited in Maxwell, 2004, p. 4). Attending to both types of explanation of causality meant including both large-scale and single-case studies. In many instances, we have found it useful to present a single case—a learner or teacher, a classroom, or a school—in the form of a vignette to exemplify the relations between learning processes and the means by which they are supported.

**Research sources in this BES report**

This BES report contains approximately 660 references. Included amongst these are research reports of empirical studies, ranging from very small, single-site settings (e.g., Hunter, 2002) to large-scale longitudinal studies (e.g., Balfanz, Maclver, and Byrnes, 2006). Some of the larger studies have multiple references because they include different papers/conference proceedings/book chapters or because they embrace work authored by different researchers (e.g., the New Zealand Numeracy Development Project). In addition, the references include reports containing educational statistics and policy, theoretical writings, and commentaries and reviews on multiple research findings (e.g., van Tassel-Baska, 1997).

The *Guidelines for Generating a Best Evidence Synthesis Iteration* point to the importance of drawing on New Zealand research in order to illuminate what works in the New Zealand context. However, despite an exhaustive search for New Zealand work, it is apparent (see chapter 8 for further discussion) that the strengths and foci of New Zealand research are not evenly distributed. In some areas—for example, early years education—there are relatively few New Zealand (or Australian) researchers working with a specific focus on mathematics education (Walshaw & Anthony, 2004). Table 2 shows the country of origin of the literature included in this BES. The numbers reflect New Zealand’s relatively new positioning within the international mathematics education research community.
Table 2: Database composition according to country

<table>
<thead>
<tr>
<th>Country</th>
<th>Relative Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>27%</td>
</tr>
<tr>
<td>Australia</td>
<td>17%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>11%</td>
</tr>
<tr>
<td>United States</td>
<td>49%</td>
</tr>
<tr>
<td>Other (e.g., Africa, Netherlands, Spain)</td>
<td>6%</td>
</tr>
</tbody>
</table>

Table 3 shows the proportion of the items included in the BES (both empirical studies and commentaries) that relates to each of the different sectors. Publications relating specifically to intermediate schools have been classified with the literature on primary schools.

Table 3: Database composition according to sector

<table>
<thead>
<tr>
<th>Sector</th>
<th>Relative Frequency (n=520)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool</td>
<td>18%</td>
</tr>
<tr>
<td>Primary school</td>
<td>48%</td>
</tr>
<tr>
<td>Secondary school</td>
<td>21%</td>
</tr>
<tr>
<td>Teacher education</td>
<td>13%</td>
</tr>
</tbody>
</table>

**Synthesising the data**

Our conceptual framework, outlined in chapter 2, offered a way of structuring the data. Within the community of practice frame in and beyond the classroom, we identified the following components: (a) the organisation of activities and the associated norms of participation, (b) discourse, particularly norms of mathematical argumentation, (c) the instructional tasks, and (d) the tools and resources that learners use. We began the iterative chapter-structuring process by outlining a number of key areas. These included mathematical thinking and identities, scaffolding and co-construction, tasks, activities, assessment, educational leadership, home–school/centre links, and wider school communities. Each of these served as a starting point for our exploration and was found, in the course of the investigation, to be a useful initial category for addressing questions of equity and proficiency in relation to effective mathematics teaching.

In time, we organised these categories more cohesively into groups. What we endeavoured to do was organise multiple elements, types, and levels and varying temporal conditions in line with the critical dimensions of a community of practice and the guiding principles established in chapter 2. The content of the subsequent chapters is shaped according to these dimensions and principles. Chapter 3 focuses on all three dimensions in a search for understanding of how pedagogy influences early years outcomes. Chapters 4 and 6 explore interrelationships that are centred on the joint enterprise of developing mathematical proficiency for all learners. Chapter 5 explores the role of mathematical tasks and the part that they play in enhancing students’ learning.

Reminding ourselves and readers that this BES synthesis is a product of currently accessible research, we concur with Atkinson’s (2000) view that “the purpose of educational research is surely not merely to provide ‘answers’ to the problems of the next decade or so, but to continue to inform discussion, among practitioners, researchers and policy-makers, about the nature, purpose and content of the educational enterprise” (p. 328). Rather than offering broad answers that promise much and achieve little, it is our hope that the structure we have used will foster understanding, reflection, and action concerning the characteristics of effective pedagogical approaches in mathematics.
References


Appendix 2: URLs of citations

The following 22 papers/articles/chapters/books are suggested as potentially useful sources for teachers to engage more deeply with the range of issues raised in this best evidence synthesis iteration. Readers are encouraged to source and read them. Several are available online; the others can be sourced through libraries.

The full citations are hyperlinked in the online PDF. For the convenience of those using a hard copy of the text, the URLs are listed below.

Carpenter, Thomas P ; Franke, Megan L ; Jacobs, Victoria R
A longitudinal study of invention and understanding in children’s multidigit addition and subtraction
http://nzcer.org.nz/BES.php?id=BES001

Clarke, Barbara ; Clarke, Doug
Mathematics teaching in Grades K–2: painting a picture of challenging supportive, and effective classrooms

Cobb, Paul ; Boufi, Ada ; McClain, Kay ; Whitenack, Jor
Reflective discourse and collective reflection
http://nzcer.org.nz/BES.php?id=BES020

Empson, Susan B
Low performing students and teaching fractions for understanding: An interactions analysis
http://nzcer.org.nz/BES.php?id=BES021

Fraivillig, Judith L ; Murphy, Laren A ; Fuson, Karen C
Advancing children’s mathematical thinking in everyday mathematics classrooms
http://nzcer.org.nz/BES.php?id=BES003

Gifford, Sue
A new mathematics pedagogy for the early years: in search of principles for practice
http://nzcer.org.nz/BES.php?id=BES004

Goos, Merrilyn
Learning mathematics a classroom community of inquiry
http://nzcer.org.nz/BES.php?id=BES005

Houssart, Jenny
Simplification and repetition of mathematical tasks: a recipe for success or failure?
http://nzcer.org.nz/BES.php?id=BES006

Irwin, Kathie ; Woodward, J (paper available online)
A snapshot of the discourse used in mathematics where students are mostly Pasifika (a case study in two classrooms)
http://nzcer.org.nz/BES.php?id=BES007

Kazemi, Elham ; Stipek, Deborah
Promoting conceptual thinking in four upper-elementary mathematics classrooms
http://nzcer.org.nz/BES.php?id=BES008

Latu, Viliami (paper available online)
Language factors that affect mathematics teaching and learning of Pasifika students
http://nzcer.org.nz/BES.php?id=BES009

O’Connor, Mary Catherine
“Can any fraction be turned into a decimal?” A case study of the mathematical group discussion
http://nzcer.org.nz/BES.php?id=BES010

Rietveld, Christine M.
Classroom learning experiences of mathematics by new entrant children with Down syndrome

Savell, Jan ; Anthony, Glenda Joy
Crossing the home-school boundary in mathematics
http://nzcer.org.nz/BES.php?id=BES049
Sheldon, Steven B; Epstein, Joyce L
Involvement counts: family and community partnerships and mathematics achievement
http://nzcer.org.nz/BES.php?id=BES012

Smith, Margaret Schwan Smith; Henningsen, Marjorie A
Implementing standards-based mathematics instruction: a casebook for professional development

Steinberg, Ruth M; Empson, Susan B; Carpenter, Thomas P
Inquiry into children’s mathematical thinking as a means to teacher change
http://nzcer.org.nz/BES.php?id=BES014

Watson, Anne; De Geest, Els
Principled teaching for deep progress: improving mathematical learning beyond methods and material
http://nzcer.org.nz/BES.php?id=BES015

Wood, Terry (paper available online)
What does it mean to teach mathematics differently?
http://nzcer.org.nz/BES.php?id=BES016

Yackel, Erna; Cobb, Paul
Sociomathematical norms, argumentation, and autonomy in mathematics
http://nzcer.org.nz/BES.php?id=BES017

Young-Loveridge, Jenny (paper available online)
Students views about mathematics learning: a case study of one school involved in Great Expectations Project
http://nzcer.org.nz/BES.php?id=BES018

Zevenbergen, R
The construction of a mathematical habitus: implications of ability grouping in the middle years
http://nzcer.org.nz/BES.php?id=BES019
Appendix 3: Glossary

The page reference for the first and/or most important occurrence of the term is given in brackets.

Cognitive engagement (p. 2). The state of being engaged in thinking

Community of Practice (p. 6). The complex network of relationships within which teachers teach and students learn

Connectionist teachers (p. 97). Teachers who consistently make connections between different aspects of mathematics

Decile (p. 9). In New Zealand, a 1–10 system used by the Ministry of Education to indicate the socio-economic status of the communities from which schools draw their students; low-decile schools receive a higher level of government funding

Developmental progressions (p. 47). Sequential learning pathways categorised as a series of steps

Empirical evidence (p. 24). Data that has been collected systematically for research purposes

Equity (p. 9). The principle based on the belief that social injustices should be redressed by allocating resources according to need, not power; in education, this may mean, amongst other things, the provision of different pedagogical approaches depending upon the needs of the learners

Family Math (p. 171). A US initiative designed to develop parents’ skills so they can work with their children on their mathematics

Feed the Mind (p. 45). A media campaign funded by the New Zealand Ministry of Education and designed to support family involvement in children’s learning

High or low press for understanding (p. 121). Differing levels of cognitive engagement demanded of students by teachers for clarification of thinking

Kāhōa (p. 36). A festive necklace (Tongan)

Kōhanga reo (p. 9). Māori-medium early childhood centres

Kura kaupapa Māori (p. 10). Māori-medium schools (kura = school), based on a Māori philosophy of learning (see pp. 54–5)

Manipulatives (p. 133). Any concrete materials used by students to model mathematical relationships

Mathematical argumentation (p. 123). Presenting a case to support or refute a premise developed by mathematical thinking

Mathematical identity (p. 19). How a student sees him/herself as a learner and doer of mathematics

Metacognition (p. 38). The knowledge and processes involved in thinking about and regulating one’s own thinking, which is essential for reflecting, self-monitoring, and planning

Norms of participation (p. 54). The rules, spoken or unspoken, that govern the way students behave and contribute in the classroom

Number Framework (p. 109). A model, structured in 8 stages, showing how students typically develop understanding of number and number operations (New Zealand, NDP)

Number sense (p. 98). An understanding of the relationships, patterns, and fundamental reasonableness that lie behind all mathematical operations

Numeracy (p. 28). The ability to use mathematics effectively, fluently, and with understanding in a wide variety of contexts

Numeracy Development Project (NDP) (pp. 9, 17). The central part of the New Zealand Ministry of Education’s Numeracy Strategy, which has as its primary objective the raising of student achievement in numeracy through lifting teachers’ professional capability

NumPA (p. 9). A structured, diagnostic interview used by teachers to place students on the early stages of the Number Framework (New Zealand, NDP)

Open-ended tasks (p. 106). Tasks that require students to engage in problem definition and formulation before beginning to think about a solution

Pasifika students (p. 9). Students whose families have come from Sāmoa, Tonga, the Cook Islands, Niue, Tokelau, Tuvalu, and some other, smaller Pacific nations

Pedagogical Content Knowledge (p. 199). In this context, knowledge about mathematics and how to teach it as well as knowledge about how to understand students’ thinking about mathematics

Pedagogy (p. 5). The processes and actions by which teachers engage students in learning

Poi (p. 26). A small ball, often made of woven flax, on the end of a length of string; swung rhythmically by women when performing action songs (Māori)

QUASAR (p. 95). A programme developed to help urban students develop understanding of mathematical ideas through engagement with challenging mathematical tasks

Revoicing (p. 78). The repeating, rephrasing, or expansion of student talk in order to clarify or highlight content, extend reasoning, introduce new ideas, or move discussion in another direction

Scaffolding (p. 27). Temporary, structured support designed to move learners forward in their thinking
School–home or home–school partnership (p. 160). The deliberate nurturing of relationships between the school and the home, in the interests of better supporting student learning

Sociocultural practices (p. 19). Practices relating to the social and cultural aspects of participation in the classroom

Sociocultural theory (p. 24). The theory that learning arises out of social interaction

Socio-economic status (SES) (p. 30). Categorisation of individuals or communities, based on income, family background, and qualifications

Sociomathematical norms (pp. 61–62). Shared understandings of the processes by which students and teacher contribute to a mathematical discussion

Tasks (p. 94). Defined by Doyle (1983) as “products that students are expected to produce, the operations that students are expected to use to generate those products, and the resources available to students while they are generating the products”

Te ao Māori (p. 54). The Māori world

Te Poutama Tau (p. 59). The Numeracy Project (New Zealand) as developed for implementation in Māori-medium schools

Te Whāriki (p. 24). The New Zealand early childhood curriculum (for children aged 5 or under)

Tuākutukua panels (p. 115). A Māori craft form consisting of ornamental lattice-work panels woven together with strips of flax into intricate designs

Waiata (p. 26). A song (Māori)

Whānau (p. 41). Extended family (Māori)

Wharekura (p. 9). Māori-medium secondary schools, which are based on a Māori philosophy of learning

Zone of Proximal Development (ZPD) (p. 36). Vygotsky (1986) describes the ZPD as the “distance between the actual development level as determined by independent problem solving and the level of potential development as determined through problem solving under adult guidance or in collaboration with more capable peers”

Abbreviations

CGI Cognitively Guided Instruction Project .......................................................... pp. 17, 105
EAL English as an Additional Language ................................................................. p. 116
EFTPOS Electronic Funds Transfer at Point of Sale .................................................. p. 115
EMI-4s Enhancing the Mathematics of Four-Year-Olds ........................................... p. 28
ENRP Early Numeracy Research Project ................................................................. p. 158
EPPE Effective Provision of Pre-school Education Project ........................................ p. 25
ERO Education Review Office ................................................................................ p. 158
IAMP Improving Attainment in Mathematics Project ............................................... pp. 18, 99
ICME International Congress on Mathematics Education ....................................... p. 20
ICT Information and Communication Technologies ............................................... p. 27
IEA International Association for the Evaluation of Educational Achievement ...... p. 154
IMPACT Increasing the Mathematical Power of All Children and Teachers .......... p. 73
MEP Mathematics Enhancement Project .................................................................. p. 60
NCEA National Certificate of Educational Achievement ........................................ pp. 10, 66
NEMP National Education Monitoring Project .......................................................... p. 9
NNS National Numeracy Strategy ........................................................................... p. 17
PISA Program for International Student Assessment ............................................. p. 8
REPEY Researching Effective Pedagogy in the Early Years ..................................... p. 25
RME Realistic Mathematics Education ..................................................................... p. 113
TIMSS Third International Mathematics and Science Study .................................... p. 14
VAMP Values and Mathematics Project .................................................................... p. 58
## Index

### A
- algebra 98–99, 126, 139–140
- artefacts see tools
- assessment 152
  - in early years 33–35, 47
  - informal 112
- Australia
  - classroom interaction 15–16
  - early childhood centre programmes 31, 44
  - early childhood computer use 27–28
  - early numeracy projects 16, 47–48, 158–159
  - families and numeracy 41, 44
  - language differences 69
  - maths as challenging experience 120
  - Overcoming Barriers to Learning Project 20
  - problem-solving among able and less able students 118–119
  - professional development 158
  - technology and students' attitudes 139
  - in TIMSS Video Study 14, 15

### B
- Berkeley University 171
- Best Evidence Synthesis (BES) xviii, 1, 14, 41, 202, 206–209
- biculturalism 6, 9, 202
- bilingual students see language
- books see reading and numeracy
- Britain see England; United Kingdom

### C
- calculators 136–137, 139–140
- calculus 106, 129, 137–138
- Canada
  - pocket-money study 169
  - pre-schoolers 43–44
- caring about students 2, 54, 56, 86, 203
- CGI (Cognitively Guided Instruction) see United States
- Checkout/Rapua 47
- Chinese students
  - in New Zealand 70
  - in United States 160–161
- Chinese teachers 197–198
- classroom 5
  - see also caring about students; feedback; group work; interaction; language
  - daily practices 61–62
  - discussion 2, 60–61, 63, 72–76, 79–81, 124, 131, 178, 193, 203
  - inequities 57, 74
  - promotion of risk-taking 55
  - social context 18
- cognitive development 55, 65–66, 79–81, 118, 120–124
  - pre-schoolers 169
  - see also families/whānau; parents
- computer use see information and communications technologies (ICT)
- concepts (mathematical) 3, 15, 69–70
- measurement 30–31
- connectionist teachers 97, 102
- contexts see tasks
- counting and number challenged as entry point 31
- cultural context of learning 46, 115, 119
- cultural differences/backgrounds 54
- culture, role of 157
- curriculum xx, 95, 115, 122–123, 151, 170
  - community involvement 44, 165–166
  - differentiation 64, 120
  - pre- and early school years 30–31, 46–48; see also Te Whāriki
  - reforms and changes 4, 10, 129
  - school leaders and 152–155
  - teachers’ knowledge of 46, 82–83, 158
- Curriculum Framework, the New Zealand xix, 7
  - Cyprus
    - parents in classroom 167
  - Czech Republic
    - in TIMSS Video Study (mentioned) 14

### D
- Davydov, V.V. 21
- decimals 116
- deficit theories 8, 60
- department heads see lead teachers
- disabilities, students with 60, 64, 119, 133, 136
  - see also special needs teaching
- disadvantaged students 60, 110, 118, 152
  - see also social inequity; socio-economic status

### E
- early childhood education 24–48
  - see also games and numeracy; play as means of learning; pre-schoolers
  - assessment 33, 47
  - centres 4, 202, 204
  - teacher knowledge 2, 45–46
  - computer/ICT use 27–28
  - curriculum 46–48
  - fantasy contexts 113
  - group work 25, 33
  - measurement activities 31
  - scaffolding 36–37, 41
  - social interactions 38–39, 46
  - work-play balance 25
Effective Pedagogy in Mathematics/Pāngarau Best Evidence Synthesis Iteration

Education, Ministry of  see Ministry of Education
Education Review Office (ERO)  152
Effective Numeracy Teaching (Pasifika Focus) project  60
England
 see also United Kingdom
defaf children, programme for  136
National Numeracy Strategy/Framework  17, 111
pre-schoolers, study of  43
streamed classes and sets  57, 118
Enhancing the Mathematics of Four-Year-Olds (EMI-4s) project  30, 32, 35
equity  8–10, 18
 see also socio-economic status
ethnic group comparisons  9, 18, 42, 83, 170
expectations for students  56

F
families/whānau  3, 10
 see also home-school links; parents
home activities and practices  41–44, 46, 162, 169
support for learning  20, 178–179
Feed the Mind campaign  45
feedback  76–78, 124–125
fractions  ix, 54, 75, 126, 177–199

G
games and numeracy  30, 32, 120, 165, 169, 171, 178–179
 see also play as means of learning
gender differences  56, 139
geometry  108–109, 133, 138
gifted students  see high-achieving students
goals of mathematics teaching  6–7, 18–19
group work  2, 64–68, 86, 190, 203
everal childhood  25, 33
multilingual classrooms  70–71
primary school  67, 108

H
Hawaii
study of money activities and knowledge  169
high-achieving students  64, 66, 98, 119–120
home-school links  44–45, 151, 160–172, 202
communication  164–165, 167
homework  167–168
Hong Kong
lessons for silent learners  15
in TIMSS Video Study (mentioned)  14

I
IAMP  see under United Kingdom
IEA (International Association for the Evaluation of Education Achievement) study  155, 168
immigrant families (in UK)  168
immigrant students  60, 63
IMPACT project  73, 171
individual/independent learning  68–69
informal learning  25–27
information and communications technologies (ICT)  136–140
 in early childhood education  27–28
for special needs child  125
inscriptions  126–127
interaction of teacher and class  15–16, 55, 63, 75, 79–81, 104, 112, 119
 see also feedback
International Congress on Mathematics Education (ICME)  20
international research  14–21
Internet and email  139
intuitive techniques of young children  35

J
Japan
addition as challenging experience  120
discussion and whole-class solutions  15
in TIMSS Video Study  14
tools to communicate thinking  136
use of students’ solutions  102–104
verbal explanations of concepts  72
Johns Hopkins University  160

K
Kei Tua o te Pae/Assessment for Learning (document)  33, 39, 44
kinaesthetic learners  15, 132
knowledge, prior or informal (children’s)  30, 113–116, 203
kura kaupapa Māori  54–55, 165

L
language  71–72, 203
 mathematical  2, 69–72, 78, 86, 204; see also vocabulary/word problems
multilingual classrooms  2, 70–71, 204
lead teachers (department heads)  154–155, 157, 158
leadership teams  152–155, 158, 159
Literacy and Numeracy Strategy (NZ)  159
low-achieving students
 in classroom discussions  63, 65–66
helped by greater challenges  18, 119, 121, 183
helped by problem-solving tasks  95, 118, 179–183
perception of mathematical structure  98, 99–100
use of manipulatives  133
low-decile schools  9, 158

M
Māori children  9, 56
Māori community involvement  165–166
Māori culture and language  54, 119
Māori families 161
Māori-medium teaching 9, 11, 59–60, 157–158
Māori students 60, 73, 114, 119, 132
mathematical understanding in young people 24, 33, 40
mathematicians’ practices, development of 18–19
Mathematics Enhancement Project (NZ) 158
Mathematics in the New Zealand Curriculum 49
Mauritius
study of home-related factors 161
metacognition 38–40, 108, 177
Ministry of Education xviii, 1, 45, 164, 205
Numeracy Strategy 59, 159;
see also Numeracy Development Project (NDP)
modelling activities 106–108, 133–135
money and numeracy 115, 169–170
motivation (among students) 162
multiculturalism 9, 170

N
National Council of Teachers of Mathematics (NCTM) 6
National Education Monitoring Project 9, 114
National Research Council 7
NCEA (National Certificate of Educational Achievement) 10, 124, 139, 152
Netherlands
contextually based tasks 113–114
use of equipment 132
newsletters (for families) 162, 164
Numeracy Development Project (NDP) 9, 16, 17, 18, 45, 111, 131, 177
classroom language 71
development of teachers 83, 111, 159
equipment, use of 129, 132
group and peer work 63, 65
Number Framework 109, 113, 157, 167
problem-based tasks 95, 98
numeracy skills, stability of 47–48

O
OECD (Organisation for Economic Co-operation and Development) reports 8, 161

P
parents 160–171
see also families/whānau; home-school links in classroom 167
communication with 44, 164–165
involvement of 30, 162–169, 171, 202
language skills 164
parental education programmes 45, 171
parental hesitancy or alienation 161, 164–165, 171
Pasifika
see also Tongan students and families
families 161
students 9, 60, 70–71, 73, 74, 132, 204
Pasifika Focus 60
path smoothing 121
patternning skills 31, 36
pedagogical approaches 5–6, 199
pedagogical practice 10, 17, 18–20, 63, 70, 139, 184, 202
peer interaction (students’) 65–68, 97, 126
see also group work
piloting 82
PISA (Programme for International Student Assessment) 8, 9, 160
play as means of learning 26–28, 45, 46, 203
see also games and numeracy
pre-schoolers
see also early childhood education
family’s role 31, 41–46, 162, 169
mathematical thinking of 24, 30, 31, 40, 48
principals, role of 152, 158, 165
professional development 17, 111, 158–159
everal childhood teachers 46
everal years educators 49
Māori-medium teachers 59
school leadership and 153

Q
qualification levels 9

R
Radzikhovskii, L.A. 21
reading and numeracy 43–44, 170–171
Realistic Mathematics Education (RME) programme 113–114, 132
reforms 10, 16, 17, 152, 154, 158, 159
relationship of teacher and students 56–61, 131
see also interaction
research 204, 206–209
gaps in 4, 204–205
international 14–21
resource persons 156
resources see tools
revoicing 78–79

S
scaffolding 36–37, 72, 121, 122, 123
examples 76, 125, 197
School Entry Assessment 47
school-wide approaches 151–152, 159–160
see also whole-school partnerships
social and economic context of mathematics 5, 78
social inequity 8–10
see also socio-economic status
social nurturing 58–60, 160
social perspective of learners 35, 36
social skills and relationships 65, 67–68, 96–97
socio-economic status 40, 42, 46, 74, 98, 114, 115, 161
South Africa
- mathematical language vs reasoning 71
- use of socio-cultural context 115

Spain
- immigrant students in 63
- special needs teaching 10, 119, 125–126
- see also disabilities, students with
- statistics 4, 10, 127, 130
- streamed classes and sets 2, 57, 58, 64, 118–119, 203
- student diversity 8–9, 60, 162
  - exchange of ideas 72–76, 79–81
  - learning logs 131
- students’ mathematical thinking 78–81, 85, 102
  - 104, 112, 127–129, 188
- pre-schoolers 40
- teachers’ engagement with 157, 195–197
- support of colleagues 154–156, 159
- see also whole-school partnerships

T
- tasks 94, 204
  - cognitive development through 120–124
  - completion as goal, flaws of 122, 183
  - contextually-based 113–117
  - learners’ existing knowledge and 111–113, 116
  - open-ended 106–109, 110, 115–116
  - 183, 191
  - task differentiation 110
  - worked examples 104–106
- te ao Māori (the Māori world) 54
- Te Poutama Tau 11, 59–60, 109, 157–158, 167, 177
- Te Whāriki (New Zealand early childhood curriculum) 7, 21, 24, 47, 49
- teacher effectiveness 5, 10
- teacher knowledge 17, 81–85, 110–111, 197–199, 203–204
  - see also professional development
  - early childhood 45–46
- teachers’ attitudes 56–58, 63, 74
- teachers’ practice, traditional and non-traditional 55
- technological tools 136–140
  - students’ attitudes to 139
- textbooks 131–132
- time (for teaching) 155
- TIMSS (Third International Mathematics and Science Study) Video Study 14–15
- Tongan students and families 70, 168
- tools 126–136, 187
- Treaty relationship 9

U
- United Kingdom
  - see also England
  - assessment and testing 112, 114
  - Effective Teachers of Numeracy project 16, 82–83
  - family numeracy programmes 44
  - feedback evaluated 77
  - IAMP (Improving Attainment in Mathematics Project) 18–19, 99, 114, 124, 125
  - immigrant families 168
  - IMPACT (Increasing the Mathematical Power of All Children and Teachers) project 73, 171
  - lead mathematics teachers 154
  - low-attaining students 121, 183–184
  - modelling in Welsh schools 108
  - parental involvement 165
  - pre-school/early childhood teaching 25, 45
  - REPEY research project 25, 31–32, 45
  - special needs teaching 125
  - streamed classes 64
  - textbooks 132

United States 18, 72, 133
- Chinese students in 160–161
- Cognitively Guided Instruction (CGI) project 17, 111, 156–157
- Family Math programme 171
- Focus on Results in Math study 20
- low-income families and districts 30, 152, 153, 158, 161
- pre-schoolers 28, 42
  - Big Math for Little Kids programme 40
  - Head Start programme 30–31
  - Number Worlds programme 30
- problem-solving approaches 95–96
- professional development 46, 111
- QUASAR middle-school programme 95, 118, 121
- Talent Development (TD) Middle School programme 95
- teacher knowledge 197–198
- in TIMSS Video Study (mentioned) 14, 15
- university entrance 9

V
- vocabulary/word problems 116–117, 164
- Vygotsky, L. 21, 36

W
- Wales: modelling in schools 108
- whole-school partnerships 157–160
  - see also school-wide approaches